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Tensor preconditioners in decomposition
methods*

A.Yu. Bezhaev

Introduction

One of the most effective approach in solution of mesh and finite-element
SLAEs
Au= f, (1)

arrising in approximation of two-dimensional (or multi-dimensional) prob-
lems is the decomposition method. The essense of the method consists in
special choice of easy-invertible linear transformation H and in a successive
realization of iterating process

ub = oF - B (AuF - ). . | (2)

The transformation H is often taken from the reasons, reflecting special
properties of the initial problem, which iz approximated by SLAE. From
the point of linear algebra these reezons may be expressed with the help of
the following example. Let us approximate the matrix A by the product
H = A, - Ay of matrices having more simple structure (upper- and lower
band). The inversion of the product matrix H on an arbitrary vector is done
easily with the help of the sweep Cholessky method. It causes high efficiency
of iterative process (2). Matrix H can also be used as a preconditioner in
the method of conjugate gradients, this additionally speeds up the solution
of the problem (1). '
Usually preconditioners are chosen on the base of theoretical spectral
assimptotic estimations of convergence rates of iterating process. Note, that
the theoretical estimates on a little number of iterations do not take place.
However, in most cases the practically satisfactory solution for a problem
is obtained for a number of iterations k, which is much smaller than the
dimension N of the matrix A. For this reason it is naturally to suppose the
existence of essentially more effective preconditioners than the theoretical
ones, if we will not assume obtaining large accuracy in solving system. We
find such an preconditioner in Section 1, having stated and approximately
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solved the problem of parameter optimization for a well-known splitting
method, minimizing arrising error with the given smoothness of the solution
and the given number of iterations k. ]

In the subsequent sections we suggest a new general algebraic approach
for searching preconditioners for splitting methods on the basis of tensor
decomposition of matrices, having effective realization. Actually the sections
are not connected with the content of the first section, except identical model
example (the Dirichlet problem for Poisson’s equation).

1. Optimal choice of parameter T in the
assumption of smoothness

Assume some representation of the matrix of SLAE in the form A = A; 4+ A,.
Then the factorized matrix H of decomposition method (2) can be chosen
in the following known form:

H=H =-11:(E+TA1)(E+T-A2). (3)

Optimal parameter for this method is equal 7 = 1/v/Mm. Here m and M
are, respectively, least among minimum and largest among maximum eigen-
values of matrices A; and A;. In this case optimal parameter is determined
from a condition of minimization of the spectral norm of the transition
matrix -

(E4+TA)) " HE - 1A)(E+7A) YE - TA)).

Optimal parameter 7 gives the best solution on all spectrum: one iteration
equally diminishes the components of an error, corresponding to the mini-
mum and maximum eigen-value and vector of matrix A. The components
corresponding to intermediate average eigen-value (m + M)/2 are reduced
best of all. But in practice it is usual the situation, when in a vector of so-
lution, hence, in an initial vector of error, the low frequency amplitudes are
great in comparison with high-frequency. The given fact is a consequence
of the following property of smooth functions decomposition in the Fourier
harmonics. If the vector u is a trace of function of the space W1[0, 1] to the
equal spaced mesh, then the following representation is valid:

N N e
U= Z um¢m = z _T%¢m1
m=1 m=1 m

where ¢,, < C, constant C is positive. It is thus possible to state optimiza-
tion problem: at given distribution of amplitudes find the optimal parameter
7, at which norm of an error’s vector, or, that the same, sum of squares of
amplitudes is best diminished.
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Assume that the error belongs to the space of traces W3[0, 1] on a mesh.
Then at iterations of a decomposition method it will change as follows:

£ = fj(l'”“‘)'f"—’“qu,

- 14712,/ m

and square of its A-norm -

)7 = 30 (w2,

- 14+1An, m?

Here A, ¢ are eigen-vectors of the matrix A. For determination of param-
eter 7 giving the best convergence for k iterations of decomposition method
one needs to find the minimum of the last function. Find the approximate
solution of the task in the following manner. As far as at 7 > 0 the function

__I—T)\
14T

Pr

monotonously decreases on variable A and its module does not surpass unit,
and the coefficients of the error decrease too, a good condition of an opti-
mal for k iterations will be the equality of amplitudes at the first and last
harmonic on k-th iteration:

1-— 2k 1 /1 =717M\2k
(1+:2) ='J\ﬁ(1+:M) ‘

This equation is solvable on 7. It is reduced to the following:

l-rm 1 1-7M
I+™m  YN1+7tM'

and further, if to denote § = ﬁ, it is reduced to square equation

(1=rm)(14+7M) = -B(1 +rm)(1 - 7M).
Rewrite it in the form, convenient for a finding of roots
T2 (~1-B)ymM + 7((1 - B)(M - m)) + B+1=0.
Then it is easy to determine the discriminant
D=(1-p8)(M-m)’+4(8+1)*mM

and the positive root
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1-fM-m)+vD
2(8+1)ymM ’

The latter result can be generalized to a splitting method with precon-
ditioner (3) for two-dimensional case. Assume the initial function to be of

the form
100 100

U= Z Z c;mi‘#’m‘pm

m=1n=1

the matrix A to be arising in approximation of the Dirichlet problem to the
Laplase equation on unit square. For this case eigen-values and eigen-vectors
have the form

—afain2 5T L2 MW
Ast_cl(sm 2(N+1)+Sm 2(N+1))
and
e smi . tnj
Ustij = smN+1 nN+1.

Numerical results can be seen from the table.

Two-dimensional problem with 100 * 100 unknowns, m = 0.00097, M = 3.99903

k T Min Max NORM NORM1 NORMT
1 1013.2022 0.0100 —0.9995 0.24743 0.779 0.940
6 378.8816 0.4635 —0.9987 0.06057 0.465 0.688

11 214.4200 0.6564 —-0.9977 0.03065 0.322 0.504
16 149.4312 0.7474 —0.9967 0.01904 0.231 0.370
21 115.1040 0.7996 -0.9957 0.01291 0.168 0.271
26 94.0302 0.8332 —0.9947 0.00916 0.122 0.198
31 79.8546 0.8566 —0.9938 0.00666 0.089 0.145
36 69.7153 0.8736 —0.9929 0.00492 0.065 0.106
41 62.1359 0.8866 —0.9920 0.00366 0.048 0.078
46 56.2783 0.8967 —0.9912 0.00274 0.035 0.057
o0 16.0772 0.9694 —0.9694

Conclusions from numerical experiments

There is the significant acceleration of error’s decreasing with the new opti-
mal parameters for splitting method if the solution is smooth.

Classic choice of optimal parameter 7,p¢ does not provide accelerated
decreasing of the error for the smooth solutions. The theoretical estimates
of error’s norm reduction with the optimal choice r are well confirmed on
individual function despite of their validity on a class.
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2. Tensor factorization of matrices
at construction of iterative processes

Generally speaking the system of equations (1) for two-dimensional prob-
lems has a sparse matrix. If one places nonzero elements around of the
diagonal, then the width of a band will be wider only in two times, than
for one-dimensional problem. Nevertheless, to achieve this with the help of
replacement variable and rearrangement of equations is not possible. The
application for the solution of a Cholessky method becomes not such effec-
tive as in one-dimensional case, as far as at any replacement of variables and
rearrangement of equations the width of a band does not manage to make

less than O(N).

Cholessky sweep method helps to construct effective algorithms in two-
dimensional and multi-dimensional problems when the matrix of system A
is represented in a tensor product of two (and more) band matrices. Since it
is not true in general, then it appears an idea of choice of a preconditioning
matrix in a kind of tensor product H = A; ® A,, that seems especially
natural for the problems of mathematical physics in the rectangular domains
when the tensor product spaces and regular grids arise. In these cases the
matrix A has a structure from blocks with band matrices, and the blocks
will also form a band structure, that is A has such a structure as well as
tensor product of band matrices.

Other argument serving the basis for choice of such preconditioner is
the algorithm suggested by the author in this article. It is intended for the
solution of the following optimization problem:

IA = H|| = min [|A - 4, ® 4| (4)

for the spherical matrix norm. It is proved that the problem is reduced to
construction of the best singular decomposition for a matrix, received from
A by rearrangement of elements.

As an important argument for the benefit of tensor preconditioner choice
we shall put the fact, that the offered algorithm for the optimization problem
(4), applicable for the matrix A of a general kind, is essentially accelerated
for matrices with block band structure for the account of essential reduction
the cost of calculations. Here the optimal matrices A; and A; are received
band.

The attained results are illustrated on a Dirichlet problem for the Pois-
son’s equation. Naturally, they can easily be applied to a problem of spline-
smoothing on scattered meshes, which could be the subject of further inves-
tigations and applications. :
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‘3. Best approximation by a matrix of the rank 1

Let F be a rectangular matrix of dimension N x M. Consider a problem of
its best approximation in the spherical norm by matrices of the rank 1:

N.M

. Ti2 .
ern g I =TI = min 3 (= wivy)® ©)
t 1=1,0=

Here u and v are columns, their product gives a matrix of the rank 1,
moreover, any matrix of the rank 1 can be decomposed in such product.
The following theorem is the well-known fact in linear algebra.

Theorem 1. Consider a problem of eigen-values

0 Flfu]_,|u
EIBEEI ®
Let the components u.,v. compose normal eigen-vector, respecting to the
mazimal eigen-value X, for problem (6). Then, vectors

u = v2\u., v =2\ (7)

are the solution to the problem of best approzimation (5).

4. Best decomposition of a matrix in tensor
product

Let B and C be square matrices of dimensions nxn and mxm, respectively.
Remember definition of the tensor product of this matrices

b iC b12C ... binC
bzlc bgzc ban

.......................

bnlc bn2c 5,1.,.6'

BeC=

having dimension (nm) x (nm). We state the problem of best representation
of the matrix A in the tensor product form

|A— A1 ® As|l = UeMrf_lgeMmllA—UGWII- (8)

Evidently, A;, A, are the matrices of the best solution to the problem (8),
the set M,, consists of any matrices of dimension n X n.
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Consider the matrix A as four-indexed:
{a'ﬁjm'z,jz}’ where 1< 41,i<n, 1 <j,j2 < m. 9)

Having made rearrangement of indexes hi,i; j, j» = @iy ji 2,5 We shall proceed
to other four-index matrix, which corresponds to the rectangular matrix H
of dimension n? x m?.

Theorem 2. The elements of matrices A; and A, which are the solutions to
the best decomposition problem (8) are received from elements of vectors u, v,
determined in Theorem 1, with the help of their two-dimensional ordering.

Proof. Problem (8) is equivalent to the following:

min Z (@iy iz = Yiniz * Viaia) s
1<i4),i2<n
]-Sjlv.'f?sm

or, after introducing the notations — to the following problem:

1 2
min Z (hfliz.ilyjz — Uijyip ° Ujlja) . (10)
1<1y,i3<n
1<41,j2<m

Here u;,;, and vj, ;, are elements of matrices U and V respectively. Assuming
N = n? M = m?, we are really convinced that the problem of the best
tensor representation is reduced to the approximation problem by a matrix
of the rank 1. m]

Remark 1. The matrix of the tensor product 4; ® A; is not a matrix of
the rank 1, moreover, in many cases it is nonsingular simmetrical positively
defined matrix and it can be used as the preconditioner in iterative process.

5. Tensor decomposition of a block sparse
matrix

Multi-index matrix A, arising in various methods of numerical mathematics
(difference, variational difference, finite element) has special block struc-
ture with band matrices in blocks determined by the following character of
sparseness. Usually there are two positive numbers k;, k; such, that the
elements a;, ;, i,,j, are not zerous, only if |i; — i3] < ky and |j; — j2| < ka.

Theorem 3. The optimal matrices A; and A, of the best tensor decompo-
sition of the matriz A with special block structure are band.
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Proof. The theorem elementary follows from the representation of problem
(10). Since the elements h;,;, j ;, are equal to zero at |i; — iy| > ky, or
|71 — j2| > k2, then without fail we receive ugm =0 at |iy — i3] > ky, and
Vi, = 0 at |.71 _le > ks o

Remark 2. Tensor product decomposition of general kind matrix was re-
quired finding an eigen-vector and eigen-value for a matrix of the order
(n? + m?) (see (6)). Special block structure matrix can be reduced to a
matrix of the smaller order O(n+m) < (2% ky + 1)n+ (2xky + 1) + m.

The block-scheme illustrating the algorithm of tensor approximation is
shown in the figure.

Multi-index
matrix A

Rearragement
of elements

Rectangular

matrix H

l

Excluding of unnecessary variables
for block sparse matrices

Seaching of maximal eigen-value
and corresponding eigen-vector

(i 5)(2)- ()
=

Vector # Vector v

l |

(Transformation of vectors in matrices)

(band possibly)

1 I

Square Square

matrix A, matrix Az

The scheme of construction of the best tensor preconditioner A; ® A»
for the matrix A
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6. Explicit construction of preconditioners
for Dirichlet problem

15

In Dirichlet problem for Poisson’s equation, at its approximation by finite
defferences, there arises the following system of equations with block three
diagonal matrix of dimension n? x n?:
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We present here only 9 blocks of this matrix, since the other blocks repeat
these. Find the best tensor factorization for his matrix. According to The-
orem 2 it is necessary for this purpose to rearrange elements of matrix A.
In our case the new matrix H looks like as follows:

( 4-1 0...0| -1 4-1 0...0/0-1 4-1 0...0 0...0-1 4\
-1 0 0...0{f 0-1 0. 0...0/0 0-1 0 0...0 0...0 0-1
000..00h 0000...0/0000 0...0 0..0 0 0
0 0 0.0/ 000O0O0...0{0 0 O0O0 0...0 0...0 0 0
-1 00...0 0-1 0 0...0{0 0-1 0 0...0 0...0 0-1
4-1 0..0|-1 4-1 0...0(0-1 4-1 0...0 0...0-1 4
-1 0 0...0/ 0-1 0 0...0{0 0-1 0 0...0 0...0 0-1
0 ¢ 0...0 0 00 0...0/{000O0O0...0 0...0 0 0

\ /

Here the blocks of matrix A are extensive in a line of matrix H: the block
" 1% 1~-in the first line, block 1 x 2 - in the second line, further the matrix
A has n — 1-th zero blocks, and the matrix F accordingly n — 1-th zero
lines, after this situation is repeated. It is obvious, that the matrix F has
very much zero columns and lines. According to Theorem 3 for such kind
of special matrices A of a block structure (k; = k3 = 1) matrix H can
be reduced to a matrix of smaller dimension, namely to a matrix of the
following system of linear algebraic equations: '
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((4-1-1 4-1-1 4 V([ o) (@)
-1 0 0-1 0 0-1 -3 -3

-1 0 0-1 0 0-1 -0 -

4-1-1 4-1-1 4 - a o

-1 0 0-1 0 0-1 -Bl=A|-p (11)
-1 0 0-1 0 0-1 -8 -3

4-1-1 4-1-1 4 a a
\ ”'J \ L) :J

In generall case we need to solve the spectral problem (6). However, in our
case matrix H is symmetric, therefore, the optimal vectors % and v should
coincide and be the solution of spectral problem Hu = Au. Actually, the
reduced matrix H has rank 2, it has only two different linear independent
lines, other are repeated. Therefore, the eigen-vector also has only two
various components, we shall denote them & and —3. Thus, find the solution
o (11). We have two equations:

dna+2(n—1)8 = Aa,
{ no = A8,

From the latter equation we have a = ABn~! and receive a square equation
relatively A
A —dnd-2n(n-1)=0

with the following roots
Amax = 2n + V6n2 — 2n, Amin = 2n — /612 ~ 2n,

From Theorem 2 it follows that for the optimal decomposition it is
necessary to find the eigen-vector u. with the following norm condition
lul> = 1/2. At first, we find an eigen-vector appropriate to the maxi-
mum eigen-value. For this purpose we put 3 = 1 and receive o = Amax/n-
Hence, substituting components of required vector a, = qo, B = B into
the norm condition, we have

(12)

¢*(n(Amax/n)? + 2(n - 1)) = 1/2.

Then, we find the unknown factor

9= \/2(A3nax+2n(n- )’ (13)

for the components of a normalized vector
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= ’\maan_la ﬁ =4q,

and obtain the components of the optimal vector

o= )\maan"I V 2/\mam )0 =qv 2/\max- (14)

Thus we have received the following statement.

Theorem 4. Factors of the best tensor product for the matriz of the Dirich-
let problem on square grid are positively defined 3-diagonal matrices of the
following form:

a -p
B o -p
A=Ay = e ,
8 o -p
8 a

where o and B are determined by (12)-(14).

Remark 3. Being engaged matrix decomposition of a Dirichlet problem,
the author has received its following beautiful decomposition in a form of a
difference of two tensor products of three diagonal matrices:

1 1
w5 P \ (%5 - )

-8 -
-3 -8
1 1
\ -6 2+ \ ~6 2655
valid for any 8 > 0.

(25 +

Remark 4. Best spectral preconditioners for the matrices of the simple
structure A= 4, @ E+ EQ® A, (as in case of Dirichlet problem) can be con-
structed explicitly. They can be received on the basis of the following exact
decomposition in the difference of products of lower- and upper triangular
matrices

1
AIQE+E®A,; = 57 (E+TAI®E)(E+TE® As) ~
él;(E—TAl ®E)(E—T’E®A2)

valid for all 7 > 0. Actually this decomposition is also the tensor one, since
it can be rewritten in the equivalent form
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1
AIQRE+E® A = 2—T(E+_TA1')®(E+TA2)—
1
: ~—'(E - T-A1) ® (E - TAQ). (15)

' Usmg this’ decomposntlon and ‘the known spectrum, one can construct opti-
mal value T for convergence when utlhzmg the first component

E(E + TA'l) @ (E+742), ‘ (16)
as the préconditione: |

Remark 5. Note the following analogous decomposnt:on for the Laplace
.operator at the differential level :

e 9 By 1, @
et e 2(f+ dz)®(f+fdz_):2,(-_ " 53) ® (f— )



