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Numerical solution of 3D equations
of motion*

Y.L. Gurieva, V.P. II'in

1. Introduction

We consider algorithms of numerical solution of a nonlinear system of three
diffusion-convection partial differential equations (PDEs)
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which are the main part of a stationary Navier-Stokes problem (the latter
is added/closed by the continuity equation divd = 0, @ = (u,v,w)). Here
u, v, w are the velocity components and p is a known pressure as well as the
right-hand side functions f;, fy, f..

There are'many publications dealing with approximations of PDEs (1)
by finite difference, finite element and finite volume methods (FDM, FEM,
FVM, see [1-3], for example). We consider an exponential type FVM ap-
proach, whose idea is presented in [4, 5] for a single diffusion-convection
equation. The main features of the obtained system of nonlinear algebraic
equations (SNLAE) are: second order of accuracy O(h?) on the uniform grid
and the absolute monotonicity in a sense that matrix A is a monotonic ma-
trix (A~! > 0) independent of mesh-size values and the velocity component
signs, for a given velocity .

The resulted SNLAE is solved by a two-level iterative process. The
external one presents the relaxed nonlinear iterations for velocities, at each
step the block linear system (SLAE) for the given coefficients u, v, w is
solved by a biconjugate minimum residual method with multiple restarts.
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This paper is organized as follows. In Section 2, we describe the numer-
ical methods. Sections 2 and 3 have a short description of the code and
results of numerical experiments, respectively.

2. Numerical approaches

For every velocity equation, we use the FVM approximation on the paral-
lelepipedoidal nonuniform grid

iy =i +hf, Y=y +hl,  zZ =2z +hi,
i=0,...,1, i=0,...,J, k=0,... K.

We construct the Dirichlet—Voronoi cell around each grid node with the
indices 1, j, k

Vijk = {-’Bi_uz <z < Tit/2 Yj-1/2 <Y <Yjty2 Zk-1/2 <2 < zk+1/2}

and denote its surface by S; ;z.
The approximation of equation (1) is based on the divergent form of
operator L:
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Taking the integral of anyone of equations (1) for different functions s = u,
8 = v, or 8 = w over the cell V; ;x, we come to the balance relation

[ Jhds = [ g, dV, (3)
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where g, depends on one of the right-hand side functions and one of the
pressure gradient components, and #,, J* = a; + ins are the velocity
component and the density of the flux in the direction of the outer normal
to S,' ke

To construct approximations of (3) we use the approach presented in [5)
thus introducing two new functions p and ¢ to make a new representation
of the flux, say, over the cell surface perpendicular to z-axis:
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where h is a typical mesh size and the notation J§; corresponds to the
value of the flux at the midpoint between the nodes with local numbers 0
and 3 (figure). Then we use a linear interpolation of ¢, take exactly the
exponential integral, and reject a truncation error. We obtain the difference
representation of the flux density

JEh — $o — ¢3 ( 0 - . )
0,3 hf  \exp(po—¢s) ~1 1—ezp(ds — o)/

Introducing the notation S; = 10 14
h¥h% /4 and using approximation
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we approximate the left-hand side of 0 e
equation (3) by a simple quadrature k 3L~ I3
i ity i+l

’h ’h . N
I§',3 = Sz-]:,:‘, =aggso — ﬂg,sss- Local node numbering on a grid cell

Here we have already introduced elements of the local balance matrix

z _ SzU03 _ o z _ Szugg3
g0 = —‘1 _ CEI = G9,3%0,3, g3 = __Coz _ 1
,3 ’
up + uUg
Up3 = — 5 co,3 = exp(hiuo 3)

in order that the element-by-element approach be used for obtaining the
global matrix. In the same way one can define the rest entries of the local
balance matrix, e.g.,

ag,o = 45,400,4, 03,4 = 5?’% )

Vo4 = 2 ;—‘04’ cos = exp(hfvoe), Sy= hf4hi )
ﬂf),o = ﬂf),eco,e, 03,6 = %,

wo,6 = w, co6 = exp(hiwoe), S:= hihg-

We will skip the details of approximation of the right-hand side of (3) and
note only that we use the 3D analog of the quadrature trapezoidal formula
for the volume integral.
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After calculating all the entries of the local balance matrix and the local
right-hand side vector in element-by-element traversing of all grid cells, the
assembling procedure gives the global balance matrix and the global right-
hand side vector of the final system of linear equations. One equation, say,
for the grid node with the indices (i, j, k) has for u-component of the velocity
vector the following form:

0 1 2 . 3 .
G5 kWigk — G jk%i—1,5k — G jkUij~1k — G j pUit1 5,k —
4 5 6 _
@5 kWi +1k — Bf 5 kWi k—1 — Gg i kUigk+1 = Gijk- (4)

The global balance matrix is 3 x 3 block-diagonal matrix with the blocks
having the same structure and even the same value of their entries in the
case of the same boundary conditions for the velocity vector components.
Each block is a seven-diagonal matrix. To save the storage space, the global
matrix is represented in the form of a special row-wise sparse format [6].

So, the final system of nonlinear algebraic equations can be presented in
the form

_ A% (1) 0 0 u g
A@)-u= 0 A'(w) 0 ] [v]=[g“]=g. (5)
gw

0 0 A¥(u) w
A solution to this system is found by a low relaxation iterative process
A@m)-a™ =g, W =wi™ + (1-wp™, m=0,1,..., (6)

with a parameter 0 < w < 1.

At each step of the nonlinear iteration (6), solution of the block linear
non-symmetric system is found by a preconditioned biconjugate (multi-step)
minimum residual method (BiMR). Because of non-symmetricity of the ma-
trix, this algorithm does not posses a variational property, but it is the direct
generalization of the MINRES method which has the global minimization
of the functional (r™,r™) at each n-th iteration in the case of the symmetric
positive definite system.

The preconditioning of the block matrix 4 in (6) is made by the explicit
incomplete factorization technique A = T3 AU5", where L and Up are the
block-diagonal matrices with the blocks Lp, Ug defined in [6]. The iterations
of the BiMR method are done according to the following formulas:

"D:g_-;h‘u’ ,-.D:pﬂzﬁ(]:rl),
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}'ipn+1 - Arn-t-l + ﬁnjipn, jtﬁn+l = }-ltF"'H + ﬁnjt -n,
n=012,....

The stopping criterion for this process is the following:

(r*,r™)
(9,9)

Robustness of the BIMR method is provided by the multivariant restarts
under the conditions

<2<l

Opin < Op < Omax; ﬂmin<ﬁn<ﬂmax°

The recommended values in these inequalities are omin = 0.01, amax = 10,
Bmin = 0, Bmax = 1. In particular cases, these values should be chosen
experimentally.

3. Numerical experiments

The aim of the experiments is to check the convergence of the algorithms
and the truncation error if the exact analytical solution for the test is known.

In the tables below, we present the results of the numerical experiments.
We give the values of the truncation errors

8, = max ll8(i, sr 26) — 835

on different grids and the numbers of iterations of the BIMR procedure. If
the number of nonlinear velocity iterations is greater than 1, we present in
the tables the final truncation errors and the numbers of iterations at every
nonlinear phase of the solution process.

Also, we present the value of numerical divergence to look after its con-
vergence to zero as the size of the grid steps decreases.

Test 1. The velocity field describes a flat current of the viscous incom-
pressible fluid in a square cavity [7]. The exact solution is obtained by the
following formulas:

u(xa Z) = SCI(E)Cé(zL ”(3,7') =0, w(z:z) = —SCi(Z)Cg(Z),
Glz) = z* —22° + 22, (o(2) = —42* +102° — 622

These velocities have the property div# = 0.
The vertical volume force (fy = fr = 0) and the pressure have the
following analytical representations:
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The computational domain is a cube Q = [0,1]3. The boundary condi-
tions for the components are set as follows: u =0onz=0,z=1,z2=0
and du/dn =0ony=0,y=1, z=1; v =0 on all the cube faces; w =0
ononz=0,z=1,2=0,2=1,dw/dn =00ny =0, y=1. The compu-
tational domain is discretized by the uniform grids with the step h = 1/N,
N = 8,16,32,64. The system of grid equations is iteratively solved by the
BiMR. method with the stopping criterion & = 10710,

The number of the nonlinear velocity iterations equals 1. So, the velocity
field components in this test are, on the one hand, coefficients in the equa-
tions of motion, but on the other hand, they are the sought for unknowns.

The initial guess for the iterative subroutine is the analytical solution,
the initial velocity and pressure are also analytical. So, the aim of the test
is to check the correctness of the approximation procedure and to present
the convergence analysis when h — 0.

The results of this test are shown in Table 1. Its last column has numbers
of iterations of the BiMR procedure. Let us note that the truncation error
for the velocity component v has order 10~1® which corresponds to zero
value, so we omit these data in the table.

From this table one can see that as the truncation error decreases by the
_ factor of four while the grid steps decrease by the factor of 2, the error is of
order O(h?).

Moreover, the divergence tends to zero as the grid refines.

Table 1 ¢
- Num.
N Ou Ow ap divi of iter.
8 0.0264 0.0484 0.00381 0.476 17
16 0.00673 0.0126 0.00220 0.201 27
32 0.00170 0.00319 0.00118 0.0767 54
64 0.000429 0.000799 0.00110 0.0281 107
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Test 2. This test is analogous to Test 1 but with zero initial guess for the
iterative procedure and pressure and eight nonlinear velocity iterations.
The numerical -results are Table 2
almost the same as in Test 1 for
the truncation errors, therefore
we will give here only numbers 821 -21 ~17 - 16 ~11—-8 —0-0
of iterations of the BIMR pro- |16 | 37 — 37 — 29 — 23 —19-14-0-0
cedure at each nonlinear itera- | 32| 64 — 64 — 59 — 48 —40—0-0-0
tion (Table 2). 64 | 126 — 126 —115—100 —83 — 0 —0—0
It follows from the table data that eight nonlinear iterations provide their
good convergence as the last iterations did not iterate at all (the number of
iterations is zero).

N Number of iterations

Test 3. This test has the following analytical velocities with the property
div # = 0 under any constant pressure: )

2

u = sin® rz sin 7y sin 27z,

v = sinwzsin® 7y sin 27z,

w = —(sin 27z sin 7y + sin 7z sin 27y) sin? 7z.

The right-hand side functions fy, fy, fw are analytically calculated from
equations (1).

The computational domain is a cube 2 = [0,1]3. The boundary condi-
tions for the velocity components are zero Dirichlet boundary conditions.
The domain is discretized by a uniform grid with the step h = 1/N, N =
8,16,32,64. A system of grid equations is iteratively solved by the BiMR
method with the stopping criterion ¢ = 10~1? (Table 3). The number of the
nonlinear velocity iterations equals 1.

The initial guess for an iterative subroutine is the analytical solution,
the initial velocities and pressure being analytical as well.

It follows from these data that the truncation error is also of order O(h?).

Table 3
N | 6.=4 P ) divi Num.
w= w » of iter.
8 | 0.0946 0.125 0.0848 | 0.497 20
16 | 0.0235 0.0343 0.0494 | 0.207 31
32 | 0.00582 | 0.00869 | 0.0246 | 0.0764 51
64 | 0.00145 | 0.00219 | 0.0121 | 0.0272 7
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