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The 3D thermoelasticity program

Y .L. Gurieva*

The main objective of the paper is to present a program to solve the 3D BVP
for the problem of linear thermoelasticity. Numerical algorithms for data struc-
tures, element-by-element finite volume approximations, and iterative solution are
described. Results of numerical experiments are given.

The purpose of the present program is to solve a mixed boundary value
problem (BVP) for a system of equations of the linear thermoelasticity the-
ory in the computational domain composed of parallelepipeds, using finite-
volume approximation, element-by-element approach to get global matrix,
and fast incomplete factorization solvers.

1. The BVP statement

The problem is to find @ = (u;,uz,u3) = (u,v,w) — a displacement vector,
which os a solution to the Lamé equation for the equilibrium state of the
deformed body

—2div(pe()) — grad(Adiva) = f — grad(a(2u + 3X)T), (1)

where @ is a displacement vector, (%) is the deformation tensor with the
elements
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Z = (z1,%2,23) = (2,9, 2) is a point in the body, f is a load vector, T is
temperature, o is the heat extension coefficient, A, p are the Lamé coeffi-
cients. The latter depend on the Poisson coefficient v and the Jung modulus
E in the following way:
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The solution is sought for in the domain  composed of a set of rectangular
subdomains, where the given A, p are positive constants and the functions
f, T are smooth in each subdomain.

On the external boundary of 2, the Dirichlet or the Neumann boundary
conditions for the displacements hold.
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2. Algorithms

The domain {2 is discretized by a non-uniform parallelepipedoidal grid with
the nodes (z;,y;, z) in such a way that the boundary parts and the bound-
ary edges belong to the coordinate planes and grid lines, respectively.
Note that equation (1) is derived from the condition of the equilibrium
state of the linear elasticity theory:
dive + f =0, (2)
where 0 is the null vector and
o =2ue + Adivul —T1I (3)

is a symmetric stress tensor, v = a(2p + 3)), and I is a unit tensor with the
components ;.

We apply the finite volume approach to obtain an approximation of (1).
This means that we integrate equation (2) over a finite volume

Vije = { (@i +2i-1)/2 < 2 < (@i +2i41) /2,
(yi +yi—1)/2 <y < (yj +yj41)/2,
(ze+zx1)/2<z2< (2 + 2k+1)/2}

around a grid node and come to

- f o ds = f Fav, (4)
55,5,k Viik
where S; ; ;. is the surface of the finite volume V; ; ;. Using (3), we can write
down three components of the product o7 in the following form:
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We use the element-by-element approach 1] to obtain the global matrix
of the resulting system of equations. This means that for the grid element

Eijx = [@iZiv1] X [¥5, Yj+1] ¥ [2ky 2k41]

we calculate local additives for the resulting grid equations for eight vertex
nodes of the element from the parts of the surface integrals over eight finite
volumes around the vertex nodes which are contained in this element. The
global matrix is assembled via the local matrices for all grid elements. The
global matrix has 3 x 3 block structure

Awi Aw Auww
A= | Ay Aw Aw
Ave Aww Aww

and is a symmetric one, i.e., Ayy = Auy, Awu = Auw, Awe = Ayw, 50 we will
take into account only six matrix blocks: three diagonal blocks and three
above diagonal ones. Each block is of N x N dimension, where N is the
number of unknowns for one component of the displacement vector.
A simple quadrature formula for 10 14

the surface integral (4) in E; ; ;. gives

the following representation for, e.g.,, k+1
the surface integral for u-component

over the surface Sp3, which is a et e
part of the surface of the finite vol-
ume V; ;» around node number 0 re-
stricted by the element FE;;, and 0 el i+
which is perpendicular to the element kTt et
edge (0,3) at the point with the co- : '

ordinates (z;, /2,y,-) (the figure): Loca;nn::; b;:ﬁi{fg:i :odes

j+1

1
2

13:3 == —-So,sa’n(z“) = _Bﬂ [_(2” + A)'U3 — U +
4 h,

A(‘U4+‘U3—‘Uo“va+ws+‘w9—wO—tU3)_ T0+T3]
2hy, 2h, T )

Here we use the notations for unknowns according to the local element
numbering presented in the figure.
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For each element node, we should calculate three surface integrals for
three components of the displacement vector, so the total number of integrals
to be calculated is 8-3-3 = 72. As an example, below we give approximations
of the rest two quadratures for the surface integrals around node number 0
for u-component:

h:h ug —up Ug+v3— Up— V.
_ () . _Pehz (usa—uo  vs+vs—vo—vs
T = ~Suonf?) = —Eu(M ¢ ),
hzhy fug—up 1wy +ws—weg—w
_ (w) _ _hahy (us—up  wo+ws—ws o).
B = ~Sosoms™ === ‘"( b 2h,

The local matrix, representing the approximation of fluxes on the ele-
ment, has the same 3 x 3 block structure as global matrix:

A, A, A,

L= Asm A:m Ai:w

A‘fﬂ‘l‘ A‘{U‘U A‘L!Iﬂ

Here each block is of 8 x 8 size and has four nonzero elements in each row.

It follows from the quadratures Ijs, Ij4, 5 that the corresponding
elements of the local matrix have the form

uug3 = hy (2# +2), uugs= -’::::M,

UUg6 = 4:”' uug,0 = Ulp,3 + uug 4 + uugg,
uvg,0 = f()‘ + ), uvg,3 = hé—z(/\ — H),

uvp,q4 = %(—A + p), uvy,g = %’("A - 1)

uwg,0 = —’;-’i()n +p), uwp,3 = %(4\ — K),

uwg g4 = —’;l(—)\ + ), uwgg = —’;2-(—,\ - ,u.).

Hence, the approximation stencil for the diagonal blocks in the global matrix
is a usual 7-point stencil, the stencil for A,, block being a 9-point stencil in
the plane which is perpendicular to z-axis, and the stencil for A4,, block is
also a 9-point stencil in the plane perpendicular to y-axis. From similar con-
siderations for the integrals for v-component, we obtain an approximation
stencil of the last off-diagonal block A,.,: it lies in the pla.ne perpendicular
to z-axis and is a 9-point stencil.

Taking into account symmetry of the global matrix, its row, in general,
has 3 + 9 + 9 = 21 off-diagonal and diagonal non-zero elements. So the
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resulting grid equations are, in general, of 21—pomt type. The final system
consists of equations of the form

21

Poto — ) PrUE = gk,
k=1

where gi is an approximation of the right-hand side of (4) for a certain
component. Note that the dimension of the global matrix is 3N, where N
is the number of unknowns for one component of the dlspla.cement vector.
Hence, the global matrix is a sparse matrix.

System (5) is iteratively solved by the EXIFMR method [2] which is a
modification of the well-known minimum residuals method. The process
stops when a fraction of the norms of the current and the initial residuals is
less than a given small value.

3. Storage scheme and brief code description

To minimize the storage, we use a special sparse format for the global matrix
representation. This storage scheme has only “calculatable” nodes and the
nodes on the boundaries with the Dirichlet boundary conditions are elimi-
nated from consideration and hence from the storage scheme. Every stored
node has a thorough number in addition to its grid index (i,j,k). This
numbering is made before carrying out approximation and is in excluding
the Dirichlet nodes from consideration and associating every grid index with
a new one thorough the number of a calculatable node. The sparse format
has information for every calculatable node which consists of three groups:
the number of calculatable neighbors (the integer array NE), their thorough
numbers (the integer array NEIB), and coefficients of the link with these
neighbors (a real diagonal array D and a real array for the off-diagonal en-
tries AU). In addition, the format has a real array F for the values of the
right-hand sides for the nodal equations.

In the program, this sparse format scheme excluding the values of the
links with the neighbors is built before the approximation process starts
using information about the boundary conditions in the domain. In doing
so, the array with coeflicients is zero and only its length is calculated.

After the approximation and assembling, many entries in the global ma-
trix are zero ones (almost half the entries). To save the storage, the con-
densation procedure is applied to the sparse format. It is in excluding the
information with zero values from the scheme.

The presented algorithms were implemented into the code using the pro-
gramming language Fortran-90. The subroutines to read the input boundary
value problem data, to construct the internal grid structure were taken from
the 3D program package [3] and rewritten for dynamic Fortran-90 arrays,
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and subroutines implementing the presented approximation and forming the
sparse matrix format we developed.

4. Numerical experiments

Test 1. The BVP for equation (1) with the right-hand side and side for
a given substance concentration distribution for the constant temperature
T =Ty is considered. Here, instead of (3), we have

2 A
o = 2ue + Adivul ~ “;3 (T —To) + N —1).
The objective is to calculate a hydrostatic pressure value

2u +3A
3

having the displacement field.

For this test, the exact solution for the displacement field is known:
2.62z 3 262y 2.62z - 1073
g5 v=131-10 25 ' YT T35
and for this field H = 0. :

The test computational domain is [0,2.5]® cube. The Dirichlet boundary
conditions are given on the bottom face of the cube, the rest faces being
“free” surfaces without boundary conditions. The equation coefficients are
A=29:10% 4 =192-10*, «=6.3-10"%, N =1-0.524-103- 3. The grid
is uniform with the step A = 0.5. The stopping criterion for the iterative
process is 1078,

The test results are the following. The grid consists of 216 nodes with
36 Dirichlet nodes. The number of calculatable nodes for one component is
180, and 540 unknowns in total. A length of the AU array is 864. If the
exact solution is taken as initial guess, then the solution is sought for by 0
iterations, i.e., approximation gives the exact solution and H = 0 at all grid
nodes. If the initial solution is zero, then we arrive at the solution by 33
iterations and have H of order 107

The same test on the cubic grid with the number of nodes in one direction
41 has the following characteristics. The number of grid nodes is 68921, the
Dirichlet nodes — 1681, calculatable nodes for one component — 67240, the
total number of unknowns — 201720, a length of AU array is 1390433. For
- the PC with 1.7 GHz processor and 256 Mb RAM, for the initial guess in the
form of the exact solution it takes 6.2 seconds to construct the approximation
and 1 second for the iterative process (to calculate the initial residual). For
zero initial guess, it takes 6.4 seconds for the approximation and 52.8 seconds
for 176 iterations to attain H of order 1076,

So, an expected theoretical result is obtained with the iterative accuracy.

H= (divg — a(T —Tp) — (N - 1))

u=131-10"3 -
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Test 2. The computational region is [0,3]* cube. The exact solution to
equation (2) is known
_ . T WY . TZ _u
u = sin 3 sm—:-;--sm-:-;—, v= 5
The right-hand side is also known and is calculated by substituting the
exact solution into the equation. The boundary conditions are zero Dirichlet
conditions on all the faces of the cube according to the exact solution.

The aim of the test is to investigate approximation order, so the equation
be solved on three embedded cubic grids with /N steps in one direction equal
to 15, 30, and 60. To show the order, the truncation error §; = ||t — &3] =
max;jx ||t(zi, ¥j, 2k) — t:-"jkﬂ for three displacement components is calculated
after the iteration process stops.

The results for the zero initial guess are given in Table 1.

w—E
_4_

Test 3. This test has the computational region {2 in the form of a cube with
a cubic hole: Q = [0,3]3\ [1,2]°. The exact solution is taken in the form

u = sin(wz) sin(7wy) sin(7rz), v= ;, w= E
The boundary conditions are the exact solution on all the faces of the region.
Three grids are the same as in Test 2. The right-hand side of (2) is calculated
via the exact solution. The results are shown in Table 2.

Table 1 Table 2
Num. Num.
N bu 8 dw of iter. N B 8 dw of iter.
15 | 0.014 0.0068 0.0034 15 151 0.11 0.062 | 0.038 14
30 § 0.0035 0.0017 | 0.0087 38 30! 0.034 | 0.017 | 0.010 27
60 | 0.00087 | 0.00043 | 0.00022 72 60 | 0.0086 | 0.0044 | 0.0027 54

One can make several conclusions from the tables:

1. As the truncation error decreases by, approximately, factor four with
doubling the number of grid steps, the truncation error for both tests,
2 and 3, has order O(h?).

2. From Table 2 it follows that the error for the displacement components
differs by factors 2 and 4, respectively, thus corresponding to the exact
solution.

3. The error in Table 2 is, approximately, 10 times bigger than that of
Table 1 because the period of the solution is three times less than the
“period of Test 2, and so it lacks grid points to attain the error of the
higher order.
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