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Generation of dynamic Delaunay
triangulations

A.Y. Kouznetsov

Non-stationary problems of finite element solutions require an efficient generation of
sequential meshes with minor changes in density functions of points distribution. The
Delaunay meshes sequential generation is studied in terms of successive insertions and
removings of points following changes in density function.
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1. Introduction

Delaunay meshes (tessellations) [1,2] are widely used for solution of math-
ematical physics problems by finite element method. There are two main
reasons of the popularity: some optimal geometrical properties [3,4], and
easy implementations of the Delaunay tessellation generation for n-dimen-
sional space [5,6].

In a simplest case mesh generation is a geometrical approximation of
some region  for step h. When h is a function in , a mesh is called
a refined mesh related with the density function A(Z), Z € Q. In case
function h(z) is defined by some solution process for 2, the mesh is called
an adaptive mesh.

Following [7], here we introduce a kind of mesh called herein as a dy-
namic mesh. The dynamic mesh is different from previously mentioned
ones and is defined as a sequence of meshes with different density functions
hi(z),t1=1,...,N. For each h;(z) the related mesh DT;:

DT; = DT(P(hi(%)))

can be refined or adaptive, and P(h;(Z)) is a set of points in 2, related
with the density function h(Z). '

The approach proposed below for dynamic Delaunay meshes consists
of deriving DT; from DT;_; by successive local modifications (instertions
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and removings of points). The statement of proved Theorem 1 is most
important, it shows the way to reduce the number of points in the Delaunay
tessellation.

2. Delaunay tessellation and some properties

Let P be any arbitrary set of points in n-dimensional Euclidean space. Let
P satisfy two following conditions:

P1) the value r > 0 exists, that for a ball B(r,p) of radius r for any point
p from P as a center, the ball B(r,p) doesn’t include any other point
from P, i.e., P is a discrete set.

P2) the value R > 0 exists, that a ball B(R,z) of radius R for any point
z of n-dimensional space mentioned above, includes one point from
P at least.

A series {1/n} and {n?} for n = 1,2,... are examples of set P in R!
with violation of conditions P1) and P2) respectively.

Here below we will assume points from P not lying entirely in a hyper-
plane.

A n-polytope is a convex hull of disjoint m points (m > n, n > 1) that
does not lie entirely in a hyperplane.

Definition 1. Two n-polytopes with vertices from P are disjoint if there
are no common points for their interiors.

Definition 2. Tessellation T(P) of n-dimensional space on polytopes is a
set of not-intersected polytopes with vertices from P, that fill entire space,
can be adjacent pairwise by whole n—1 dimension faces only and any point
from P is a vertex of some polytope from T'( P).

Definition 3. A B-polytope is a convex polytope with vertices from P
that a circumball exists having all vertices on its surface.

Definition 4. A Delaunay tessellation is a tessellation of B-polytopes, that
circumball of any polytope does not include points of P in the interior.

The existence and uniqueness of the Delaunay tessellation is stated by

Lemma 1 [1,2]. The Delaunay tessellation DT(P) is entirely defined by
set P, and vice versa — P is entirely defined by DT(P).
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The following “tessellation main lemma” can be proved [1,2].

Lemma (Delaunay). Tessellation T(P) is a Delaunay tessellation DT(P)
if and only if:

1) all polytopes of tessellation are B-polytopes,

2) for any two polytopes, adjacent by common face of dimension n — 1,
the vertices of the polytopes do not belong to interior of circumball of
adjacent polytope.

The definitions above can be easily adopted for a case of finite set of
points P in the Euclidean space. In the case, we will assume below to
denote a convex hull C(P) for points from P as entire space. So we’ll
mean a tessellation of a space as a tessellation of C(P). It easily can be
checked that condition P2) always will be valid, and condition P1) will be
satisfied if P includes distinct points only.

Let us recall here two useful lemmas for spheres intersections [4].

Lemma 2. Let Ey and E, be two distinct n-spheres in R™ (n > 2), inter-
secting in a set E, consisting of more than a single point. Then Ey; is an
(n — 1)-sphere contained in uniquely determined hyperplane hys.

Lemma 3. With E, and E; - two spheres from Lemma 2, let B, and B,
denote corresponding open balls. Then on one side of hyperplane hiz, B,
will include By, and on another side it will be vice versa.

Figure 1 illustrates it for n = 2.

hy2
B,

Figure 1. Illustration for Lemma 3
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3. Delaunay tessellation generation algorithm

To simplify explanation, let us use the following notations for operations
with sets:

A4+ B=B+ A means AUB,
A~ B means A\B,
A+ q means A+ {q},
A—gq means A - {q}.

Watson’s algorithm [5] for generation of the n-dimensional Delaunay
tessellations is widely useed for practical implementations (for instance,
).

Let P be a finite set of points to be used for generation of Delaunay
tessellation DT'(P) and let II be an arbitrary B-polytope, that contains all
points of P in its interior. The polytope II is used as initial tessellation for
generation of DT'(P). Watson’s algorithm proceeds in successive insertion
of points from P into DT(P), starting from the first one. Any time a new
point is to be inserted in DT(P), local modification of DT(P) around the
point needs to be done.

Definition 5. Modification set M(q) for tessellation DT(P) is a set of
polytopes from DT(P), that contains point ¢ in related circumballs.

Definition 6. Modification area M (¢) is a polytope formed by a union of
B-polytopes from M(q).

For a set of points P with no n + 1 points on the same n-sphere for
n-dimensional space it was proved in [5] that

1) there are no already inserted points in the interior of modification
area,

2) any vertex of M(q) can be connected with point ¢ by straight line
lying within the modification area,

3) resulting tessellation of modification area M(q) is a Delaunay tessel-
lation DT (M (q)),

4) repla,ic_a’ment of polytopes from M(q) in DT(P) by polytopes from
DT(M(g)) will form a set of polytopes

DT(P +q) = DT(P) — M(q) + DT(M(q))

that is a Delaunay tessellation for P + g set of points.
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Let the function
F, : DT(P)— DT(P +q)

denote modification of the Delaunay tessellation for instertion of point q.
So the Delaunay tessellation generation according to this approach is a
sequential implementation of the function for points from the set P.

4. Removing points from Delaunay tessellation

Let DT(P) be a Delaunay tessellation for some set of points P. Let’s now
consider the problem of removing some point ¢ from P and related changes
in DT(P), i.e., the problem of reducing Delaunay tessellation DT(P — q)
from DT(P).

If N(q) is a set of B-polytopes from DT(P) that includes point g as a
vertex, we introduce

Definition 7. The set N(g) is called a neighbours set for point g (Flgure 2).
As we did it with M (¢) let us also introduce a neighbours area N (g).

Figure 2. Neighbours set Figure 3. Neighbours area

The Delaunay tessellation of the neighbours area N (¢) can be denoted
as DT(N(q)) (Figure 3).

Theorem 1. For any point of the set P a tessellation -
DT(P - q) = DT(P) - N(¢)+ DT(N(q))
of P — q set of points is a Delaunay tessellation.

PRrOOF. As far as any polytope ¢ from DT(P) — N(g) belongs to DT(P),
it is easy to see that ¢ will satisfy the conditions of Delaunay Lemma for
P — q set.
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As far as DT(N(q)) is the Delaunay tessellation of the neighbours area
the conditions of Delaunay Lemma are valid for polytops from DT(N(q))
and points from P that are the nodes of the neighbours area N (9)-

S0, now we need to verify the condition 2) of Delaunay Lemma for any
polytope w from DT(N(g)) and any node @ from P — N(gq) that belongs
to adjacent polytope W from DT(P)— DT(N(q)) (Figure 4).

Figure 4. Adjacent polytopes
It easy follows from Lemma 3. o

Lemma 4 follows from the definitions of modification set M(q) for
DT(P) and the neighbours set N(q) for DT(P + q):

Lemma 4. The following equations are valid

DT(M(q)) = N(q),
DT(N(q)) = M(q).

Let a mapping
F;':DT(P)— DT(P - q)

correspond to transformation of the initial Delaunay tessellation for point
q to be removed. Then it follows from Lemma 4 and definitions for F; and
F~1:
q
(F; ' F)- DT(P) = DT(P).
For a fixed and enumerated set of points @, addition of points from @ into
tessellation DT (P) we’ll denote as F(Q) - DT(P):

1
FQ=]J[F=F. Fay-...-F,

t=n
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where F; = F;,q; € Q. In the same way let us denote F~1(Q):

n
FYQ)=[[F'=F"-F'-...-F

i=1
Then
(F7Y(Q)- F(Q)) - DT(P) = DT(P).

As far as we defined F(Q) and F~1(Q) as insertion and removing points
from set @ and DT'(P), so following Lemma 1 it is clear to see that previous
equations are valid. It also follows that the order of points in @ is not
important for F(Q) and F~1(Q), i.e.,

F;-Fj=F;-F,

and
F;_l . P;:—l — I‘-;-—l . F;_i.

5. Dynamic triangulations generation

Generation of dynamic triangulation for domain Q, i.e., a sequence of tri-
angulations with different density functions can be done by successive use
of transformations F and F~! for each step of changing triangulation. It is
also possible to change domain € in a time of changing triangulation with
related changes to be done for transformation F.

In [5] a Delaunay tessellation speed estimation as O(N -log(N)) was
proved for N to be a number of nodes in tessellation.

It follows from points removing process above and Theorem 1 that
without estimations of pre-processing time the estimation for removing K
points from a Delaunay tessellation will be O(K).

Thus, if transformation from DT; to DT;_; will require removing K1
points and addition of K2 points, then generation of DT; can be imple-
mented at O(K1+ K2 -log(K2)) time, so this is in practice much faster
than DT; generation from scratch without use of information from DT;_,.

The approach proposed above shows an efficient way of generation of
dynamic Delaunay tessellations (triangulations) and can be widely used for
solving non-stationary problems of mathematical physics by finite element
method.
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