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Modified Runge-Kutta method. II

Yu.l Kuz_netsov

Modern Runge-Kutta method of solving ODE bears a slight resemblance with the classical
(explicit) method and is based on the transformation of the differential equation to the
integral one. The contents of the mathematical theory was formulated by J.C. Butcher
et all (see [1], [2]). Nevertheless, the technique of constructing fundamental equations of
RK-method remained unchanged. In this paper new concepts are lying in the basis of
constructing fundamental equations. Some new ideas are used for solving the fundamental
equations, in particular, the principle of nilpotency for explicit, diagonal and singly-
implicit RK-methods is successively performed. In the second part of this paper the
investigation of the nilpotency method is continued. The main attention is paid to the
singly implicit RK-method [3]. The new set of the singly implicit RK-schemes of high
accuracy was proposed.

Let us give some necessary results (with corresponding numbering) from
Part I of this paper [1]. We discuss the problem of discretization of ordinary
differential equation ' ' '

8 | |
.é.g.:f(t,y), 0<t<T, y(0)=%, (L1

by means of the system of nonlinear algebraic equations

0 = Yn, | .

n=yn+TY Biifi, i=1Um+1, (1.2)
j=1 '

Yn+1 = m+1

with the notations
fi = £(&mi),
EL=t,+ AT, i=01)m+1, C(13)
M0=0, Ampr=1, A< Xip, B
which may be presented in the vector form
0= me+7BS,

(1.11)
Yntl = Yn + Tbm-!-lfa
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Bu Pz ... Bim
B= Bar B2z ... Pom

--------------------

Bmi Pmz .- Pmm
bi=(Biry--- Bim)y i =11)m+1,
A = diag()y,..., \n), h=diag(1,1/2,...,1/m),
7=, nm)T, f=(fye 0 fu)7,
g=(91,-s9m)T, e=(1,...,1).

The test function method leads to the following equations

bW = el h, (1.13)
Ej=0, j=1(1)M,
M1 (1.17)

Iﬂ.-f-l = Eum +17 ’

where
E; =1— jbpiiAi e, (1.18)

where I, is a local trancation error, M — an order of accuracy. For receiving
the following set of equations :

bms1B7 (kB - A)A*~1e = 0,

. (1.21)
2<j+k<N, j=11)N-1,
; k —1)! . :
bmy1B A*le = ——(.—b,,, AMi7le = (k= 1)lb,y  BFHi-1e,
m+1 (k +J — 1)! +1 ( ) +1 (1.22)
; k~1)!
bmgr B AR = 2
* (k +3)! (1.23)

k=0()M -3, j=1Q1)M,

where N > M, the weak approximation principle was proposed. However,
equations (1.13), (1.23) are also not enough for determining B, A, bp;.
The characteristic polynomial of the matrix B plays the fundamental role
in the theory of RK-methods.

Qm(A)= A" - iqy\““" : (1.24)

i=1
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The present paper establishes that the most representative class of the

RK-methods of moderate accuracy is characterized by specific form of the
polynomial @, (A),

Qu(A)=(A—p)™ =A™+ (-1YChpiam, (2.1)

J=1

connected with property of nilpotency matrix B — uE, where u - a real
number. For such matrix the following assertion takes place. ‘

Lemma 2.1. For k > 0, representation

m m -_ k . . _ .
B = 3 (1) Ik R it B (2.3)
i=1

is valid.

One can use the nilpotency property of the matrix B —pFE to transform
the fundamental equations (1.23) in the following way

k1 (k
bm+l(B_#‘E)JAk e:#-’ Ek+ gl' 5:23( /’-“)1 (26)

k=1(1)M—j, j=01)M-1.

The right-hand side is proportional to the k-th Laguerre polynomial deriva-
tive of the (7 + k)-th order with respect to the variable !

k
Li(A) = Z(a-l)k_j%CiAj. (2.7)
7=0 )

k +I Y

1= & _Z( et (211)
This yields
1

kLE_L(#) - (2.12)
mLSﬁll(/\) = Lnt1(A) + Ln(). (2.14)

Lemma 2.6. The discretization order of the nilpotent RK-method defined
by (2.6) under condition

() #0 22
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and in the case of solubility of equations (1.23), is equal to the nilpotency
indez, i.e., M = ind. If N > ind + 1, then under additional condition

@ (1y_
L,.nd“(”) =0, (2.22)
the order of accuracy is equal to ind + 1 - the mazimal achieved one.

Definition. The nilpotent RK-method is said to be complete if the matrix
B is complete.

For the complete nilpotent RK-method the equations (2.6) have the
form

bm1(B — pE) A le = “J'ML(") (l) ,

(k+5)! I \p (2.25)
k=11)m-j, j=01)m-1,
b == B iy ™, (2.26)
thereto, according to (2.22),
— 1,m7(1) _1_
Emy1 = miu™ L (u) (2.27)
. j .
bm+1(B - ”E)m—JAke = 20'.7/\5: = gl{:’ 3.6
1=1 ( ' )
k=0(1)7-1, j=1(1)m,
Bm=0)! ity (1
j— m—j , £
%= g rb e I () G0
j i
mi(A) = H()\ -N)= ch,l)\]_l, cjo=1 (3.10)
=1 =0

Theorem 3.1. For the triangular nilpotent matriz B — pE with single \;,
i = 1(1)m, to have the nilpotency indez equal to m and the vector by, 1, to
be the adjoint vector of height m, it is necessary and sufficient that

1) condition
i 1
L ) j+1 . J+1
/\_7 = ch—l,lgj_1/ZCJ—I,Igj—I—l
1=0 =0

be violated for all j;
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2) LW (1/p) # 0.
Lemma 3.3. In the DIRK-method the following relations are valid:

. 1 J :
bm.}.le_JAJE = ﬁ - ch,j_,-gf-, j = 1(1)?’?‘1, (3.21)
J) i=0

thereto g} is defined in (3.7) and the coefficients ¢jj—i are defined in (3.10).

3. The DIRK-method (continuation)

Let us determine the maximum order of accuracy for the DIRK-method.
In doing so we will assume ind = m. The solvability analysis of equations
(3.6) shows, that the condition N = m brings about a consistent, i.e
non-contradictory system (3.6). Hence, Lemma 2.6 in its first part can be
applied to the complete DIRK-method and provide the order of accuracy
M = m. In order to apply the second part of the lemma to the DIRK-
method, let us prove the following assertion.

Lemma 3.5. In order to satisfy the condition N = m + 1, it is necessary
and sufficient to satisfy equalities '

o i ) '
brg1 B™ I Ne = (Tnj+—1)!(1 = Emy1), j=0(m,  (3.25)

where
' Emy1 = miu™ LY b (1/p).

ProOF. Note first, that equations (6), which are valid for j = 1(1)m, in the
case j = 0 are reduced to the form g3 = 0. Since this extension is consistent
and imposes only some restriction on u (LE:l_l(,u_l = 0), equations (3.21)
in Lemma 3.3 might be also extended by assuming j = 0(1)m. Then it
follows from Lemma 3.3 that equalities v; = jv;-1, 7 = 1(1)m are necessary
and sufficient for the equality N = m + 1 be valid, where N is the weak
order of accuracy and
o
Y%= )¢9}
1=0

In this case equations (1.21) are valid for j + k < m + 1. Smce v; are
recursively related, we find easily that

v = i = jlgg = J’m—ﬁull(l/#)
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Therefore, substituting these values of v; into (3.21), obtain

b1 BN = I mp® (17 o
m+t (m+1)] my1l “mali/H)

The above-proved lemma contains something more than the second part
of Lemma 2.6, since it determines the conditions of attaining equality N =
m + 1. Due to this fact, the following assertion is valid.

Theorem 3.5. For the order of accuracy in the complete DIRK-method to
be equal to m + 1 (M = m + 1), it is necessary and sufficient that relations

1
L8, /m =0,
. ZJ= cj, __ng+1 .
A = My A.‘i+1 = _I: 02 ’;i::’ 1= 0(1)’”1— 1,
k=0 Ci.i—k9k

hold simultaneously.

PRroOF. All relations in the statement of the theorem are corollaries of the
equalities v; = 0, 7 = 0(1)m. The first relation is equivalent to yo = g3 = 0
due to (3.7) and property (2.12). In order to obtain the other relations,
we act similarly to the derivation of Theorem 3.1. Replace the coefficients
Cj+1,j—i+1 in the condition 7;4; = 0 with their recursive representations
and solve the equalities with respect to Aj41, 5 = 0(1)m — 1. The case
A1 = u follows from the general one for j = 0:

1
_a_ 1 Q)
AL = gol = m+ le+1(1/’J’)/Lm (1/#)

m 1
= wt ue s L (W) 11 ),
if equation (2.19) for j -1 =2, k—¢ = m+ 1 is used. It remains to
note only that due to separation of the roots of the polynomials Lg)()\)

and L,‘,ﬂ_l(»\), they do not simultaneously turn zero, and the requirement
of completeness for the DIRK-method is compatible with the condition
M = m + 1 providing A; = p. O

Some features of the nodes A; of the complete DIRK-method with M =
m <+ 1 is given by the theorem as follows
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Theorem 3.6. For the order of accuracy of the complete DIRK*method to
be equal to m + 1, it is necessary tu satzsfy condition

1
| / Tn(A)dA = 0.
0
PRrOOF. Since the condmon Tm = 0 is' necessary for attaining M m + 1, _

then
Z Cm,m— JgJ

According to (3.7), g7* = (k + 1)7! due to which the prevmus equalxty

implies
m

1 C
Z mcm,m—j =0.

But definition (3.10) of the polynomlal wm()\) leads to

'/TrmA)d)\ Z Cmmeie o
0 ; .

The simplest realization of the DIRK- method i is carned out in the case .
p = 0. From relations (1. 2) we find that -

m = ¥Yn,
i—1 o
T = Yn + TZﬁ”f(fj,nJ), i=21)m+1, (3.26)
. =1 DR

Yn+1 = Mm+1,

which implies that all the values 7; are determined explicitly. The RK-
method, described by formulae (3.26), is said to be the explicit RK-method.
It is obtained from the DIRK-method by the limit transition with the help
of (2.12). All the algorithms of the DIRK-method are also valid for the
explicit RK-method.

Since the explicit method is a particular case of the dla,gona.]ly implicit
one for p =0, its sta,bxhty function R(7) is a polynomial:

m 1 i
R(r)=Y_ s
=0
i.e., a segment of the Taylor expansion of exponent. The domain of absolute

stability of R(7) in the explicit method cannot be large ‘and this imposes
serious restrictions on the value of the stepwidth 7.
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4. Singly implicit RK-method

In a more general case, a nilpotent matrix is not necessarily triangular. In
order to specify the matrix B, m?, scalar equations are required. However,
one cannot obtain this number of equations at the expense of raising the
order of accuracy, as it is demonstrated by Lemma 2.6. Hence, it is neces-
sary to move in the direction of the weak order of accuracy N. But we will
see that in this case the domain of the parameters j, & in (1.21) should be
also reduced.

Lemma 4.1. In the nilpotent RK-method the condition N = m + 1 takes
place if the equation

3 et = ™LA (/W)
poord ‘-+ 1 ' m+ 1 m+1

holds.
PROOF. Let us consider relations (1.21)for N=m+1,j=m—-k+1:
bmi1 B *(kB - A)AFle=0, k=1(1)m. (4.1)

With the exception of the cases k = 1 and k = m, these equations do
not depend on the group of equations (1.21) for k + j < m. However the
equality

1
bm.HB"‘e = ‘n';'!'bm-{-lAme,
due to the Cayley-Hamilton theorem, is expressed by means of the indicated

group, hence, it must be consistent with the latter. According to (2.3),
(1.23) and (2.11)

m 1 1 1
bmy1B™e = mtD) m+ "L D (1/m)-

Thereto, (3.10) and (1.23) yield

m-1
1
bm ATe = - Cham—i = " 1 -
e § +1 m+1 2:=+1 mm=i:

Equating these two expressions, we come to the statement of the lemma.
a

We see that choosing A;, i = 1(1)m, and p according to Lemma 4.1,
one can obtain the weak order of accuracy equal to m + 1. One cannot
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achieve in the general case a higher weak approximation order. Indeed, let
us consider the condition N > m + 2. In this case, equation of Lemma 4.1
is complemented, in particular, with the following:

bms1B™¥(B — A)e =0,

bmpr((m+k+1)B—A)A™ e =0, k>o0.
Powers B™tF are expressed with the help of formula (2.3). Powers A™+F

are reduced similarly with the help of formula (3.10). It is easy to establish
the following relations for the case N = m + 2:

bm+1 Bm+16 = 1 ! m+1 L(l)

= (m+2)| - +2 m+2(1/1u')
- L), (1/m), )
4,
bysB™Ae = —b pm L0 (1/p)
m+1 T mr2) mtot  TmizlA
—u™H Ll (1/m);
L m — 1 cm,l m (l)
—ibms1BATe = (m+2)' + m(m + 1" Ly (1/1)
Cm,m—i
" m! Z (z +1)(i42)’
(4.3)
Ll paAmtle = L lTeml im0
(m+ 1+ (m+2)  (m+ 12" ~mH

Cm,m—i

1
+(m+1)!§(i+1)(i+2)'

The left-hand sides of equations (4.3) must be identical. In the condition
L(1+1(#_1) = 0, it is possible only when the equations

cm,m—:
Z <G+DE+2)

take place, which means that M = m + 2. But the second equality from
(4.2) implies that the equality

m!bm+leAe = bm.HBA'“e
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cannot be valid in the same conditions, since Lg,_z(,u.—l) #0,ie, Nisa -
fortiori less than m + 2. Thus, in order not to lose the nilpotency property
of the matrix B—pF, we will restrict ourselves to the case M < N < m+1,
but in order to obtain a sufficient number of equations, we will consider
truncated scheme (1.21), in which the powers of the matrices B and A do
not exceed m: . - 3
b1 B "1 (kB — A)A*¥le = 0,

G=1m, k=11 (44)

Let us now introduce the following

Definition 1. The nilpotent RK-method with the conditions M < N <
m+1 and auxiliary conditions (4.4) for [ = m — 1, m will be said to be the
singly implicit RK-method.

In order to apply Lemmas 2.6 and 4.1, it is necessary to check now
whether the nilpotency index of the matrix B — pE in the singly implicit
RK-method is equal to m, i.e., the singly implicit RK-method is complete.
But since the technique of the further analysis is essentially connected with
the Frobenius matrix F,

0 1 1
. 01 .

F=| ° SOV (4.5)
0 0 1
Pmn -+ P2 P

let us consider some of its properties first.

The Frobenius matrix is characterized by the following property. Each
of its eigenvalues, notwithstanding its multiplicity, has only one eigenvector.
This follows from the fact, that the matrix AE — F has the rank m — 1
independently of ‘A. In order to convince ourselves in that, it is sufficient
to cross out the first column and the last row of the matrix. Let us prove
this fact in a more general form.

If A, ¢ = 1(1)m are eigenvalues of the matrix F, then

m

PE-Fl=m=[0-2) == mam (46)
3 |

=1

is the characteristic polynomial of the matrix F. Let us define this fact in
a more general form.
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Lemma 4.2. Let d = diag(dy,...,d,,) be a dia'goﬁaf matriz. Then the de-
terminant of the matriz AE —dF has the following form

m—1

IAE —dF| =)~ %" ( ]'[ d,-)pm_;,\*’, (4.7)
' i=0 “j=i¥1 7 ;

where the product is assumed to be equal to one, if the upper limit is less
than the lower one. : :

Proor. Consider the determinant of the (j + 1)-th order

A —d
A —dy
A;(A) =

_dmpm s _dmpm—j+1 _dmpm—j
Uncovering its last column, find o
Aj(A) = ~dimpm—i XN + d;Aj_1(A).

Since E

A1) = ~d(Vpmot + dipm),

the induction easily justifies the representation

B j
A;(A) = —d, 2 ( H dk)pm_,-)\’.
i=0 “k=i41 , -
But the determinant A,,_;(}) differs from |AE — dF| only in the missing
summand A at the intersection of the m-th row and the m-th column, due
to which

IAE — dF| = A™ + Am_1(). o

It follows from (4.6), that Wi, FT = MWy, k = 1(1)m, Wy, is the
k-th row of the Vandermonde matrix. Thus, if all the eigenvalues of the
Frobenius matrix are different, representation

WFT = AW | (4.8)

takes place. Raising the matrix dF T to a power, one has to keep in mind
the representation as follows:
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Lemma 4.3. There holds

L ome—j -1
@Fy =" [ deeiciy; + Z i), (4.9)
=1 k=i i=m-—j3+1

where +(V) are some row vectors, the sum is considered to equal zero, when
the upper limit is less than the lower one.

PRrOOF. The assertion of the lemma is evident for j = 0, 1. Let us assume
it to be valid for j = k < m — 1. Then, taking into account e e = &y, find

m m—-kl+k=-1
(dF)k’l = (dee.-_le? + em"g)) ( Z H dtelej_l.k + Z eg'rf(k))
i=2 =1 =l =m-k+1
m-—kit+k—1
= Z 1-[ die;— 1€,+k + Z d;_1€i_ 11‘( )+ e r(l)(dF)k
1=2 I=i-1 i=m—k+1

Changing the summation index (from i — 1 to 1), obtain representation
(4.9) in the notations

P = @B = m - k()m -1,
H) < DY -

Corollary 1. Find for d = E from Lemma 4.8

m—j m
F=Y e+ Y el j=o01)m, (4.10)
i=1 i=m-j+1
where ]
rgﬁ'l) = r(_'gl, i=m-j+11)m-1,
rlt) = p(D i,
Ifd = h then
m—j
- 1
(FThY = Y —eisjel + Z (riTeT, (4.11)
i=1 J i=m—j+1

with the appropriate definition of 'r(’)

The row vectors r'3) admit a simple interpretation. According to (4.8),

Fi(Wie)" = 3 (We)”
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or

Z At‘l—.?—le' + Z !j)(Wk.)T — )\i(Wk.)T.
i=m—7+1

Multiplying the equality obtained by ef, 1 =m —j+ 1(1)m from the left,
find
(J)(Wk.)T Abri=1

whence
Am+j - Tg+1)(Wk.)T.

Let r91) = (9,08 ..., p9), o = p;, i = 1(1)m. Then

APH = Zp‘”,-A;;, k = 1(1)m,

1=0

or

A™H = Z P9 AL >0 (4.12)

Therefore, the (m + j)-th power of the matrix A is a linear combination
of m lower powers, and the last row of the (j+1)-th power of the Frobenius
matrix contains the coefficients of this linear combination.

Let us try, as before, to obtain the nilpotent RK-method with the
maximum nilpotency index. The choice of nodes affect, though slightly,
the nilpotency index in the DIRK-method.

Let us distinguish a class of singly implicit methods, for which this
effect is missing.

Definition 2. A singly implicit RK-method with non-degenerate matrices

A and W and the conditions Z&)(4~1) # 0 and C(m — 1) is said to be a
transformed RK-method.

The transformed RK-method is characterized hy following

Theorem 4.1. In order the vector b, 41 in the singly implicit RK-method
with the non-degenerate matrices A, W and the condition A (1) #£0to

be the adjoint vector of height m, it is necessary and sufficient to satisfy the
condition C(m — 1).
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PROOF. Assume that the vector b,,41 is the adjoint vector of height m
for the matrix B. Then (4.4) implies directly Condition C (m — 1) due to
linear independence of the vectors b1 B2, j = 1(1)m.

In order to prove the sufficiency, let us assume Condition C(m — 1) to
hold, due to which

kBW,y, = AWe, k=1(1)m - 1.

Evidently, the unknown vector BW,,, in the assumption |A| # 0 may be
represented as mBW,,,, = DAW,,,, where D is some diagonal matrix. With
the help of this representation Condition C(m — 1) may be defined in the
following matrix form

BW = A(Wh+ (D - E)W,nelh) = (AW + (D — E)YAW, e )h.

Since the matrix W is non-degenerate, let us carry out the similarity trans-
formation and define the matrix B = W-1BW. The characteristic polyno-
mials of the matrices B and B coincide. We obtain

B=WT'BW = (W'AW + 2eL)h = (FT + 2el)h = FTh,  (4.13)

where
z=WIA(D — EYWep, (4.14)

is, generally, an unknown vector and F, is the Frobenius matrix of the form
(4.5), where py,_; is replaced with py,_; + zi41, ¢ = 0(1)m — 1, thereto z;
are the components of the vector 2. Hence, the characteristic polynomial
of the matrix B is |A\E — FTh|. In the conditions of the theorem relations
(1.13) imply bpy1 = eThAW=1, thus

bmt1(B — pE)™ ! |
= elhW=Y(B - pE)™ ' = eTh(B - pE)"'w~!
m—1
=elh(FTh — uEY" "W~ = ¢Th Y (—w)m T (FTRY WL,
: i=0

In order to show that b, 41(B —pE)™~! # 0 independently of the choice of
the non-degenerate matrix W, it is sufficient to calculate the first compo-
nent of the vector by, 41(B — pE)™"'W. According to Lemma 4.3, taking
into account that d = h, obtain
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m=—1

bmt1(B — pE)" " 'Wey = Y (—p)™31C5 _ 1 eTh(FT h)e,

m-—1

1
> (=wmitiel 15 Thejya

j=0

m-—1 ' ;-
_ m-i-1ci (1/pY
= JX“(:)( 1) ‘el G+

= (1/m)u™" 11,01( ) #0,

whence, in view of non-degeneracy of the matrix W, conclude that
bm41(B — pE)™1 £ 0, ie., (B— pE)™! # 0. Hence, the nilpotency
index of the matrix B — uF is equal to m, and the vector b,y is the
adjoint vector of height m. : O

Corollary 2. The singly implicit RK-method with the non-degenerate ma-
trices W, A and the conditions L'} (1/p) # 0 and C(m — 1) is complete.

As soon as the characteristic polynomials of the matrices B and B
coincide, relations (2.1) and (1.3) and Lemma 4.2 with D = h bring about
the following equality

Qm(X) = Zq,xn "= |AE - Ffm o
=1
m —
Z ( z) (p: + Zm—it1 )Xm_'
1=1

from which we find

6= " b ai), = 1(1)m. (4.15)

Expressing ¢; through (2.1) leads us to a limitation on the coefficients
Pi + Zm—it1:

—~ —!i)!C:"”i’ i=1(1)m. (4.;6)

This makes clear that fixing a vector z, we thus specify the nodes );,
i = 1(1)m. In the simplest case z = 0 relations (4.15) and (4.16) admit the

Pit+ Zm-iy1 = ('"1)i—1'( =
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form
m — 1)} )
g = (m - i)t - ) pi, i=1(1)m, (4.17)
P = (_1)‘ l(m — l.)'c:“#" 1= l(l)m' (4‘18)

Relations (4.13) are reduced in the meantime to the form BW = AWh,
i.e., to Condition C(m).

Definition 3. RK-method is said to be a collocation one, if it satisfies
Condition C(m).

As we have already stated, Condition C(m) means that the values #;
approximate the solution of differential equation at the nodes ;, i = 1(1)m
with the order m. For the collocation RK-method relation (4.17) is defining,
for the nilpotent collocation method the same role is played by (4.18). It
is essential that restriction (4.18) should not affect non-degeneracy of the
matrices W and A.

Theorem 4.2. In the nilpotent RK-method the intermediate nodes \; satisfy
relation

Aj . :
Lm (;) =0, j=1(1)m, (4.19)
and thus the matrices W and A are non-degenerate.

ProoF. Applying representation (4.18), calculate the characteristic poly-
nomial 7,,(A) of the matrix A:

m!

it = S

m i i 1 .
mipm Y (=1 S (VP
j=0 7

i.e., according to (2.7),
Tm(A) = mlp™ L (A/p),
-which implies the assertion of the theorem. a

Corollary 3. In order the nilpotent collocation method to be complete, it is
necessary and sufficient to satisfy the condition Lg)(p"l) #0.



Modified Runge-Kutla method. II 61

The class (_)f transformed RK-schemes is not exhausted by collocation
schemes. Relation (4.16) implies that the characteristic polynomial of a
transformed RK-method in the most general case has the form

T (A) = mip™ Ln(Mp) + ) 2 (4.20)

i=1
The coefficients 2;, i = 1(1)m define a polynomial of the order m — 1
and should be chosen so that the polynomial 7,,()) has single real roots on

the interval [0,1] (at least, mainly). These requirements could be provided
non-trivially (as in the case of collocation methods) by setting, for instance,

Zm-1(A) = iziAi_l = const L1 (A/p). (4.21)

i=1
In order to understand why is it so, let us make the following statement.

Theorem 4.3. Let two polynomials Pp(X), Pn_1()), of the order m and
m — 1 respectively with real single roots p;, i = 1(1)m, v;, i = 1(1)m — 1
ordered by ascendance be specified, i.e., p; < piy1, i = 1(1)m—1, v; < viyy,
i = 1(1)m — 2. Assume in addition that the roots v; separate the roots p;,
e,

Hi < Vi < Pig1.

Then the polynomial R,,(\) of the order m,
Rm(’\) = Pm(/\) + CPm—l(A)s (4'22)

where ¢ is an arbitrary real constant, has real single roots X;, 1 = 1(1)m,
separated by the roots v;, i.e.,

)«;‘ <y < /\;‘+1.

ProoF. The polynomials R,,(A) and Pp(A) have the same order and both
tend to +00. Moreover, (4.22) implies

Rp(vi) = Pp(vs), 1= (1)m - 1.

Since the open interval (y;,v;41), i = 1(1)m — 1, contains a root of the
polynomial P(A), it has the opposite signs at the points v; and v;,;.
Hence, R,,(A) has the opposite signs at the ends, i.e., the root lies inside
the interval (v;,vi41), ¢ = 1(1)m — 2. The polynomials P,,(A) and thus
R () also have one root each inside the intervals (—oo,11) and (vy-1, 00).

a
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Representation (4.20) combined with (4.21) provides for the necessary
properties of the polynomial m,,(A) due to the separation of the roots of
the polynomials L™(A) and L,,—1(A). But the polynomial z,_1()\) may be
represented in a more general form. In the assumption

Hi < Vi < pig1, 1=11)m -1, (4.23)
the polynomial ,,(A),
Tm(A) = mp™ L (A1) + ¢Lm—1(A/V), (4.24)

where ¢ is an arbitrary real number,

La(uin™) =0, i=1(l)m,

Lpa(vv™) =0, i=1(1)m-1,
and v satisfies relations (4.23), also has the real roots A;, i = 1(1)m,
satisfying property

A<y <Ay, i=1(1)m-1. (4.25)

Representation (4.24) provides for the most general transformed RK-me-
thod from all those considered. So, for v = y obtain (4.20), (4.21) and for
¢ = 0 obtain (4.18), i.e., the collocation RK-method.

Let us establish the order of accuracy of the transformed RK-methods.
Lemma 2.6 implies

Theorem 4.4. The order of accuracy of the transformed RK-method is equal
to m.

In order to apply the second part of Lemma 2.6, one should address to
Lemma 2.1, which implies that in order to satisfy N = m+1, it is necessary
and sufficient that

um (1) _ m+ 1 Cmmei
LnaQ/w) = =25 Zo i1
o (4.26)
-— m_+1 - pm—i+_l__
) ~ i+l m+1)

This equality admits a simpler form in application to the transformed RK-
method. Substituting p,,—; from (4.16) to the right-hand side, find

wmLR) (1 )_m+1(m+1+ mz( D™ +1)' (I/M)‘Z I)

1=0

um m + 1
Liﬂn(l/ )+ —— T’
i=1



Modified Runge-Kutta method. I1 63

which implies

Theorem 4.5. In order to satisfy the condition N = m + 1 in the trans-
formed RK-method, it is necessary and sufficient that

m

Y Z-o (4.27)
=1 t
Now we can state the conditions, in which the order of accuracy is equal
tom+ 1.

Theorem 4.6. In order that the disretization order M in the transformed
RK-method defined by (4.24) be equal to m + 1, it is necessary and sufficient

that

LY (1/p) = LO(1/v) = 0. (4.28)

PRrOOF. For the collocation method ¢ = 0, thus the statement of the theo-
rem is a simple corollary of Lemma 2.6. If ¢ # 0, by Theorem 4.5, in order
to attain N = m + 1, it is necessary and sufficient to satisfy (4.27), which
is nothing else but the equality

1 m
f AN =0,
J |

1=1

or, by (4.21),

1
/ Lm-1(A/v)dA = 0.
0

The left-hand side of this equality is equal to Lﬂ’(l/u). In the meantime
the left equality in (4.28) is a corollary of Lemma 2.6. O
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