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Parametric estimate of the solution
of the boundary value problem
by the Monte Carlo method

Roman N. Makarov

Introduction

One of advantages of the Monte Carlo methods consists in capability to eval-
uate various functionals by weighting estimates, for instance, it is possible to
evaluate the eigenvalues by using the estimate of the parametric derivations
of the solution. The other significant application of weight estimates con-
sists in capability of parametric extension of the solution in the case when
a solution of the problem and its estimate are analytic functions.

In the present paper, applications of parametric estimates of the Monte
Carlo method are illustrated on various numerate examples for the boundary
value problem

Au+du=—g, rebD,

(1)

In articles [1, 2], an algorithm of resolving the boundary value problem
(1) was constructed by using the process “walking on spheres” with reflection
from border. This algorithm has obtained rigorous vindication only for
A < 0. If the first eigenvalue ¢* of problem (1) is greater than zero, then it
is possible to extend the area of utilizing the algorithm in the case of A > 0
via analytical continuation of the resolve. Let us represent a solution of
problem (1) as the series

ad A
u(r,2) = 3 20N 3y (2)
=0 ¥
where the partial derivatives vp = ulP) = g%. Choosing Ay < 0 we can

obtain an estimate of the solution for 0 < A < ¢*. In the present article, it
is shown numerically that it is possible to obtain the estimate of a solution
of problem (1) for 0 < A < ¢* directly, do not resorting to the calculation of
the parametric derivatives v, and to the construction of the series (2) on its
basis.
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1. The main problem and the estimate of
the solution ’

Consider the boundary value problem (1) for A = —¢ < 0 in the bounded
domain D C R? with the boundary I. The vector field ¢ satisfies the
following conditions:

(£(r),n(r)) 260 >0, [é(r)[=1, reT,

where n(r) is an outward normal vector to I at ». Let a and 3 satisfy the
conditions:

0<a(r) < omax,; 0<B(r) <PBmaxs alr)+pB(r)>1, rel. | (3)

Henceforward, we suppose the functions «, £, g, ¢, the vector field ¢,
and the boundary I' satisfy the regularity conditions that guarantee the
existence and the uniqueness of the solution u(r) of the considered problem,
and also the possibility of using the integral representation with the Green
function for a ball inscribed in D [4, 5].

Let us give the exact definition of the process of “random walk on
spheres” with reflection from the boundary. The Markov chain {ry}r=01,....
is specified by the following characteristic: w(r) = §(r — r¢) is the density
of initial distribution (i.e., the chain goes out of the point rq); p(r,r') is the
density of transition function from r to »’ which is defined by the expression:

' 3(30’d)65(r)(7',): r e D\T,
p(f‘,r ) = ,
Q(r)druht(r ): r E re,

where dg(;) is the generalized n-dimensional density that corresponds to
uniform distribution on the sphere S(r), and 8, _p is the generalized density
corresponding to transition from the point » € I, to the point 7 — h£(b) with
probability 1, where b = b(r); p(r) is the probability of chain termination
at a point 7, which is defined by the expression

1-s(co,d), e D\T,,
1—g(r), rer,

plr)=1- fD p(r,r)dr' = {

where d = d(r), e, = |b— 7|, 0 < ¢y < ¢, and L is the number of the final
state (the moment of terminating the trajectory). '

In [1, 2], the estimates of the average number ER of reflections and the
average number EL of transitions are obtained.
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Write the collision estimate £(r) for 7 = o € D in recurrent form |1, 2:

§i=Q(ri)ita+ fi, i=0,...,L-1, (4)
S(C, dt)
) i D PE)
Q) = sCe,dy’ TP
1, r; €I

Here d\/_ 3
+ ag,
d =
sed) = gaz I B+ ag, + ah
Having calculated with the probability 1 — p(r;) the estimate &;, 1 is cal-
culated at the next point 7;,; of the chain and the estimate of the function
f(r) is added to it. With the complementary probability p(7;) the chain ter-
minates. Obviously, the inequality p(r) < 1 must hold if the corresponding
weight is nonzero.
For » € D\T, the quantities f; = f(r;) are estimated in randomize form
in accordance with the expression

4r / dw/ (1 B —) c,(cci d)w)g(m,w) &

d2 ( c ) :
= —E {—’— W } ; 5
where w is an isotropic n-dimensional unit vector, the value € is distributed

in the interval (0,d) with the density

p(z) = 6z(1 d—zm/d).

f(r)

In T, the quantities f; = f(r;) are calculated exactly:
h
1) = e

There is the unknown error function 1(r) in expression (6). For this
reason, we have to pass to the actual biased estimate &, in which ¢(r) is
replaced by zero:

o(r) + ¢(r). (6)

z(nQr,)ﬂr,

1=0 \ j=0

In (1], the following main theorem for the estimate was proved:

Theorem 1. If the second-order derivatives of a solution of (1) are bounded
in Leip and one of the conditions: a(r) > ag > 0 orc > 0 is satisfied, then
the mathematical expectation E¢, , = up(r) ezists, |Eérnll < 00, ||[Dérpll <
o0, and |u(r) —up(r)| < Ch,r € D, h > 0.
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2. Extension of the estimates on the case of
solving the equation Au + cu = —g with ¢ > 0

In the present section, the numerical investigation of possibility of extending
the estimate on the case of solving problem (1) for the equation Au+cu = —g
with positive c is carried out. Earlier, a stochastic estimate of a solution to
the Dirichlet problem for the equation Au + eu = —g with positive ¢ has
been constructed in article [6]. The approach used in this article is based on
a probabilistic representation of a solution of the Dirichlet problem which
is true for ¢ < ¢*, where —c* is the first eigenvalue of the Laplace operator
for the domain D on the class of functions satisfied the boundary condition
u|r =0. In the case of the second and the third boundary value problems,
a probabilistic representation of a solution has been constructed for ¢ < 0
only [8]. Nevertheless, the region of application of the constructed algorithm
could be expanded on the case of the problem

Autcu=—-g, r7€D,

(7
au+ﬁ%=(p, rel,

with positive parameter c. If we suggest that a solution u(r,c) of problem
(7) is an analytical function up to ¢ < e}, then the function E¢(r,c) is an
analytical function of ¢ also, and the equality E£(r,c) = u(r,c) holds for
¢ < 0 and Vr € D. Since two analytical functions coincide for ¢ < 0, then
this parity will hold up to ¢ < ¢f.

Consider the boundary value problem in the unit cube D C R3:

Au +cu =0, rebD,

(8)
au+ﬁ-§—3—=tp, rel.

Let the boundary condition in (8) either satisfy the requirement a > ag > 0,
or have the mixed form:

o
au-i—ﬂa—i;'—‘soh r eIy,
U = 3, Terz,

where I'; is an open subset of I' and the subset I'; = I' \ I'; is nonempty.
In this case, the first eigenvalue c* of the uniform problem (8) is greater
than zero. To obtain the integral representation corresponding to problem
(8) for ¢ > 0 the Green spherical function for the Helmholtz equation should
be used [5, 7]. The expression of the weight s(c,d) (in R3) is the following:
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/e

s(c,d) = sh(dy/Tel)’ "=0
’ —-& c>0
sin(d\/c)’ -

It is clear that the general form of estimate (4) remains the same. The
weight s(c,d) > 1 for ¢ > 0, so we will consider only the case with breaking
in e-neighbourhood of the border (i.e., p(r) = 0 for r ¢ T;).

Further we will consider the boundary value problem (8) with the fol-
lowing exact solution

u(r) = ch(rl %) Ch(‘f'z %) ch(r;:, I%'), c <0 )
cos (rl\/§> cos (1‘2\/;) cos (1-3 \/_g), c> 0.

Two boundary conditions were considered. In the first problem, the
condition on I" had the form u + g—; = 1 (Table 1). In the second case, the
problem with the mixed boundary condition:

@
on

was solved, where I'; consists of the cube faces r; = 0, r, = 0, r3 = 0, and
'y consists of the cube faces r; = 1, ry = 1, r3 = 1 (Table 2). The view of
the function 1 is obtained by substitution the exact solution u(r) (9) in the
formula of the corresponding boundary condition.

The evaluation of c* for the first problem is approximately estimated:
¢* =~ 5.1. For the other problem there is the explicit value: ¢* = 0.7572 ~
7.4.

Let us consider now the computation results. The solution was estimated
for different values c in the cube center. The obtained results are reflected

()

o

’U|I‘1 = 11’1,

=12

T

Table 1. The problem with the third boundary condition

c u(r,c) uy ton o? N h
—10.00 3.0261 3.0318 +0.0171 14.6 5.10% .001
—5.00 1.7966 1.7990 + 0.0078 3.1 5.10* .001
—1.00 1.1312 1.1284 + 0.0045 1.0 5.10% .001
1.00 0.8809 0.8748 + 0.0050 1.3 5.104 .001
2.00 0.7732 0.7653 + 0.0076 2.9 5.10* .001
3.00 0.6759 0.6597 =+ 0.0202 20.5 5.10% .001
4.00 0.5883 0.4888 + 0.1403 984.3 5.10* .001
5.00 0.5097 0.5674 + 0.3719 69152.7 |. 5-10° .01 |
5.25 0.4914 0.2421 + 0.7848 307996.2 5.10° .01
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Table 2. The problem with the mixed boundary condition

¢ u(r,c) uy ton a? N h
—10.00 3.0261 3.0413 £ 0.0075 5.08 9.10* .001
—5.00 1.7966 1.8018 + 0.0027 0.66 | 9.10* .001
—1.00 1.1312 1.1320 + 0.0004 0.02 9.10* .001
1.00 0.8809 0.8802 + 0.0005 0.02 9.10* .001
3:00 0.6759 0.6733 + 0.0018 0.28 9.10* .001
5.00 | 0.5097 0.4947 + 0.0060 3.26 9.10* .001
6.00 0.4394 0.3863 + 0.0103 9.64 9.10* .001

6.50 0.4071 0.3498 + 0.0312 971.15 1-108 .01

7.00 0.3767 0.2295 + 0.0352 1238.87 1-10° .01

"in Tables 1, 2. Here uy is the solution estimate, oy is the estimate of the
corresponding mean square error, o2 is the estimate of D¢, N is the number
of trajectories, h = ¢ is the length of rebound.

The received results indicate that the estimate of the Monte Carlo me-
thod for ¢ > 0 is close to the exact solution (taking into consideration the
mean square error oy ), moreover, in the case of the problem with the third
boundary condition good accuracy is obtained up to ¢ = ¢*.

3. Estimating spectral parameter derivatives of
the solution

‘We want to clarify the possibility of evaluation of the parametric derivatives
u(™)(-, ¢) by the estimates §,‘-m) (c). Further the notations

A=—c and sp(A,d) =s(-],d)

will be used. Let us examine the situation when A < 0, and estimate (4) is
simulated on the chain with absorptions as inside D as in neighbourhood of
the boundary, i.e., ¢p >0.

The main result of [3] is presented below.

Theorem 2. Ifg =0, ¢ =1, A < 0 and 0 < ¢y < ¢ then the following
inequalities hold:

|U(m)(7')_E£,(-r:)|Sth! reD, m=12....

2
Moreover, the values E (55::")) are limited uniformly for all » € D and

h>0, e, B(6%) <Dy < +oo.

In the former section, the numerical algorithm for estimating the initial
eigenvalues of the Laplace operator will be presented. It should note that
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the simplest algorlthm is obtained for A = 0, but for all that the stating

$(A,7) = 5(0,7) = 1 holds and fulfillment of the inequality p(K) < 1 is
guaranteed only for the third boundary value problem, when a(r) > ag > 0,
r € I. In this case, it should simulate the breaking trajectories in I'. with

the probability p(r) = 1 — ¢(r) only. It is clear that all obtained results will
transfer on this case.

4. Computing eigenvalues

Computing parametric derivatives of a solution of the problem
Ou
Au—cu=0 ut+f—| =1

realizes the iterations of the resolvent operator [A—c]~! at uniform boundary
condition. Consequently, the following expression holds:

(m—1)
mu” (M) i VmeD, (10)
u(m)(ro) m—oo

where (—c*) is the first eigenvalue of the Laplace operator for the domain
D on the class of functions which satisfy to the uniform condition cu +
B%4Ir = 0.

Using relation (10) the algorithm of the Monte Carlo method for esti-
mating the value ¢* can be obtained:

mB&H (o)
&7 (o)

cf =

-G (11)

where fﬁ";)(c) is the biased estimate of the m-th parametric derivatives of
the solution.

Let us proceed to constructing algorithm of calculating parametric de-
rivatives by the Monte Carlo method. As it is seen from the type of the
est1mate it is enough to define an algorithm of calculating the derivatives
Q , where

Q= H

Introduce the notation a = \/E Differentiating on the variable a via the
logarithmic derivative

5(60: )

Q. =Q(lnQ),,

the recurrent expression can be obtained:
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(m) _ N~ 4, olm—k)___(m=1)! 0 _
Qa - kgltha (k ] 1)'(m — k)" Q g Qr

where

te = (n Q)M = Z (Ins(c,d;)|® = Zt(ﬂ

j=0

and

m
QE\I) = —QW/(2a), Qf\m) = (~2a)™ Zaﬁm)ak_mQ(k), m>1,
k=1

a{™ = (=)™ D(2m - 3)1, af™ =1,

a,(em) = aiml Y -(2m-2- k)afcm_l), 1<k<m.
The values tg ) are calculated for the j-th sphere by the following formulas:

t) = (k- D=1 Ta* +dfy, k=1,2,....

f1 = —ch(d;a)/ sh(d;a), f2=f-1,
f3=2f1fa, fa=2(f2 + f1fs),
fs = 2(3f2f3 + f1fa), fo =23f3 + 4f2fs + fifs),

f1=2(10fsfs +5f2fs + f1fs), fs =2(10f% +15fsfs + 6fafs + fifz).

At ¢ = 0 we have

Q™ — (m-k)___ (m—1)! © _
zth o im i N =@

where
i—-1

i_l . .
bute =3 limilns(e, &))" =t 3 o), o) =,
=0 =0

and the constant coefficients b, come out by using obvious recursion from
the presentation which holds for sufficiently small values ¢

d/e |
ln[sh(d\/é)} == (Z (2k+1)' k)

p=1

Give ten coefficients b:
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b; = 1.666666667 - 1071,

be = 1.298642568 - 10™*,
by = 1.111111111 - 1072, by = 7.893341227 - 107°,
by = 2.116402116 - 102, bs = 5.598081415 - 107°,
by = 6.349206349 - 1074, by = 4.537581858 - 1075,
bs = 2.565335899 - 104,  byo = 4.137766635 - 105.

Now consider the results of numerical tests. New algorithms are utilized
for computing the parametric derivatives u&k) (A = —e¢) of a solution of the

boundary value problem

Au—cu=0, in D={0<r; <1, i=1,2,3},
ou
Bnlp, ~ 0 U =1

where

Fl:{reaDl'ﬁ:UVrl:l}, FQ:aD\Fl.

Calculations are performed at the cube center » = (0.5,0.5,0.5) for ¢ = 5,
h = e =0.001, the number of trajectories N = 50000 (Table 3).

Utilizing the estimates of the solution and its parametric derivatives at
¢ = 5, the value of the solution was evaluated for other values of ¢ via the
Taylor series to compare with the corresponding solution estimates, which
had been obtained directly. The mean square error was evaluated by the
following manner:

a(§£i) = ;0(&) =5.

The numerical results are included in Table 4. The estimates yy of the
solution for various values of ¢ were obtained by formula (4) at h = ¢ = 0.001,

Table 3. Estimates of the parametric derivatives

up u}, - 10° ujl - 10 uj’ - 10°

0.7133 & 0.0005 44.64 + 0.057 40.32 £ 0.151

50.18 + 0.359

Table 4. Estimates with using Taylor series at ¢ = 5

c yN ton y}é” ton yﬁ“’ ton

0 1.0000 £ 0.0000 0.9999 £ 0.0011 1.0000 £+ 0.0011
10 0.5318 =+ 0.0007 0.5317 £ 0.0011 0.5318 £ 0.0011
15 0.4091 + 0.0007 0.4051 £ 0.0032 0.4091 + 0.0037
20 0.3221 + 0.0006 0.2826 £ 0.0093 0.3262 £ 0.0215
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the number of trajectories N = 50000. Here yg) is the solution estimate,
obtained on basis of the Taylor series with five derivatives, and the estimate
ygo) is obtained by the Taylor series with ten derivatives, respectively.

The results of the numerical tests demonstrate that estimates of the
solution, which are received by the algorithm “walking on spheres” with
reflection, is in good accordance with the estimate on the basis of the Taylor
series.

In the second numerical test, relation (11) was numerically realized in
the center of the cube

D={0<r;<1, i=1,2,3} CR®
for the family of the boundary value problems

Ou
Au+ Au =0, n | = 0, wulp,=0. (12)
Here I'; and I'; are parts of the surface I' = I'; UT'; of the cube D which
are constituted from the cube sides. The exact values ¢* for such kind of
problems (12) are known, and some of them are put in Table 5.

Table 5. Exact values of ¢*

Problem # Equations of sides constituted I'; c*
1 ry= 2.257% ~ 22.207
2 r1=0, m=1 27? ~ 19.739
3 r1=0, r2=0, r3= 0.75m% ~ 7.402
4 r1=0, r1=1, r2=0, r3=0 0.57% ~ 4.935

For the considering family of the problems there are two parameters
having an influence on computational costs of estimates: the values ¢ and
co- Carrying out calculations the following behaviour has been remarked.
Foremost, growth of ¢ implies considerable diminution of the estimate of the
mean square error of the value ¢*, but at the same time to reach adequate
accuracy it has to calculate higher order derivatives. Secondly, for ¢y > 0
the computation time was diminished, but the statistic error of the estimate
increased and precision became worse, so as the optimal parameter was
chosen ¢y = 0. Thirdly, during employment of the algorithm of computation
¢*, which corresponds to ¢ = 0, it was noticed that test time was less twice
approximately in compare with the algorithm for ¢ > 0, but the variance
was considerably greater, what did not give advantage in total.

In Tables 6, 7, 8, some results of computation of values ¢* are presented.
Calculations are made in the cube center » = (0.5,0.5,0.5) at h = ¢ = 0.001.
Here, as c;,(?), c;g;lg and c;ggg are denoted the Monte Carlo method esti-
mates of the value c*, obtains at ¢ = 0, ¢ = 10, and ¢ = 20 correspondingly
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Table 6. Estimates of the value ¢* ~ 19.739 for Problem 2
(co =0, N =2500000at c =0 and N =1000000 at ¢ > 0)

m | o rons | cNmEonae | cnmtonm
3 19.34 £ 0.006 18.38 £+ 0.003 16.77 + 0.002
4 19.62 £+ 0.016 19.32 £ 0.007 18.63 £ 0.004
5 19.64 +0.038 19.61 £+ 0.014 19.34 £ 0.007
6 19.56 + 0.083 19.69 £ 0.025 19.59 £ 0.012
7 19.45 £0.17 19.72 £ 0.042 19.68 £ 0.019
8 19.35 £ 0.31 19.71 £ 0.070 19.71 £ 0.028
9 19.31 £ 0.53 19.67 = 0.12 19.72 £ 0.042

10 19.36 + 0.82 19.59 +0.19 19.74 + 0.060

Table 7. Estimate of the value ¢* ~ 7.402 for Table 8. Estimate of the value
Problem 3 (N = 3-10%, ¢y = 0 for ¢ = 15, and ¢* ~ 4.935 for Problem 4 (cp =

N =10%, ¢ = 0 for ¢ = 10). 0, N = 300000).
m | cNToEoNa | CNasEonge m cn10 £ N0
3 8.74 £ 0.007 9.21 + 0.007 3 5.580 + 0.006
4 8.22 £0.014 8.80 + 0.012 4 5.318 £+ 0.011
5 7.82 +£0.023 8.26 + 0.020 5 5.127 4+ 0.017
6 7.60 £ 0.036 7.89 £ 0.034 6 5.029 + 0.026
7 7.51 +0.054 7.68 + 0.054 7 4.982 + 0.036
8 7.48 £ 0.077 7.57 £ 0.084 8 4.956 £ 0.050
9 7.48 £0.11 7.52 +£0.13 9 4.939 + 0.067
10 7.52 £ 0.15 7.49 +£0.19 10 4.926 + 0.088

on the basis of relations (10), (11). The statistical error of estimates c;ém)
~ was calculated by the expression

=) )
™ (4R Dol +uivion )

UN ) - m . 2
‘ uis (uive — on2)

(13)

(m)

where u N, 18 the estimate of the m-th parametric derivative, uﬁ’"’, ag?c) is
respective mean square error. Formula (13) is obtained from consideration
of confidence intervals for values of kind (10), (11).
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