Bull. Nov. Comp. Center, Num. Anal., 11 (2002), 95-101
© 2002 NCC Publisher

The program NODE for solution
of ODE stiff systems

E.A. Novikov

The paper introduces an algorithm for the numerical solution of initial value
problems for systems of ordinary differential equations (ODE). The algorithm uses
the Rosenbrock-type and the Runge-Kutta-type schemes with Jacobian freezing
and automatic step size control policy based on the global error estimation. Some
examples of solution of test problems are given.

The routine NODE solves systems of first order ordinary differential
equations of the form 3 = f(y) with initial data given. The integration
algorithm involves:

¢ 10 Rosenbrock-type methods [1-5]

m ' 8
Yntl =Yn+ Zpik,-, D,=F — ﬂh.f:n fn — fa(:n) ,
i=1

i—1 i-1

Dypk; = hf (yn +> ﬁijkj) +) aijkj.
=1 i=1

For f(y) = Ay + b, the schemes are of the order from two to ten,
for a nonlinear function f(y) — from two to three. The methods are
used with the freezing of the Jacobi matrix to be calculated both
analytically and numerically.

¢ 13 explicit Runge-Kutta-type methods [6-9]

m i—1

Ynt1 = Un + 3 piki, ki =hf (yn + Zﬁijkj)-
i=1 ji=1

The domains of the stability methods are extended to 200 along the

real axis. With explicit methods, the scheme order and the number

of stages are automatically chosen depending on the step size and the
value of eigenvalues of the Jacobi matrix.

With the explicit Runge-Kutta-type methods and the Rosenbrock-type
formulae, the choice of a scheme is subject to the estimate of a maximum
eigenvalue of the Jacobi matrix [8]. This estimate is defined by the power
method with the use of the stages already calculated [6, 7].

96 ‘ E.A. Novikov

NODE (Double precision)

Purpose Solves an initial-value problem for ordinary differential equations
using the Rosenbrock and the Runge-Kutta methods.

Usage CALL NODE(MS, N, T, TK, H, HM, EP, Y, F, M, TR, RP, DRP)

Arguments

MS — the integer work array of length 11.

MS(1) - an indicator to the first call; 0 means the first call for the problem
(initialization will be done); 1 means that the first call is performed
(Input/Output).

MS(2) - an indicator specifying the task to be performed: 0 means “take

one step only and return”; 1 means the normal computation of
output values of Y(T) at T = TK (Input).

MS(3) - an indicator responsible for the method calculating the Jacobi ma-
trix. At MS(3) = 0 the matrix is numerically calculated using the
DRP, at MS(3) = 1 (Input).

MS(4) — an indicator responsible for the integration method. At MS(4) =0,
the Rosenbrock-type methods and explicit methods with auto-
matic choice of numerical scheme are used and at MS(4) = 1 the
explicit Runge-Kutta methods are used (Input).

MS(5) - an indicator responsible for the problem type: MS(5) = 0 if the
problem is nonlinear, MS(5) = 1 if the problem is linear (Input).

MS(6) — the number of steps taken for the problem so far (Input/Output).

MS(7) — the number of F evaluations for the problem so far (Input/Out-
put).

MS(8) - the number of Jacobian evaluations for the problem so far (In-

+ put/Output).

MS(9) - the number of the matrix LU decompositions for the problem so
far (Input/Output).

MS(10) — the number of inverse motions in the Gauss method (Input/Qut-
put). .

MS(11) - the number of the repeated calculations of the solution for the
problem so far (Input/Output).

N — the size of the ODE system (the number of first order ordinary
differential equations) (Input).

=

o

DRP

The program NODE for solution of ODE stiff systems 97

- an independent variable. In input, T is used only for the first call,

as the initial point of integration. In output, after each call, T is
the value at which a computed solution Y is evaluated if MS(2) = 0.
Or T = TK if MS(2) = 1 (Input/Output).

the end point of integration (Input).

the step size to be attempted at the first step. The default value
is determined by the solver. In output H takes on the value of the
step predicted (Input/Output).

the minimum absolute step size allowed. If the step predicted is
less than HM, H = HM, the computational accuracy is not controlled.
The default value is determined by the solver (HM = 10~*2) (Input).

a relative error tolerance parameter (Input).

an array of dependent variables. In the first call, Y should contain
initial values. In output, after each call, Y contains the computed
solution evaluated at T if MS(2) = 0. Or Y(T) = Y(TK) if MS(2) = 1
(Input/Output).

the real work array of length 2N(8 + N).
the integer work array of length N.

a parameter. If |Y(i)| > TR, the relative error EP will be controlled
in Y(i). If |Y(i)| < TR, the absolute error EP*TR will be controlled
in Y(i). The default value is determined by the solver (TR = 1.0)
(Input).

the user-supplied subroutine to evaluate functions. It is to have
the form:

subroutine rp(a, t, y, c)
double precision t, y, ¢
dimension y(n), c¢{(n)

where N, T, and Y are the input parameters, and the array C=£ (y)
is the output. Y and C are arrays of length N. RP must be declared
EXTERNAL in the calling program.

the name of the user-supplied subroutine to compute Jacobian
matrix. It is to have the form:

98

E.A. Novikov

subroutine drp(n, t, y, a)
double precision t, y, a
dimension y(n), a(n, n)

..................

where N, T, and Y are input parameters and the array A is to be
loaded with partial derivatives (elements of Jacobian matrix) on
output. The DRP must be declared EXTERNAL in the calling pro-
gram.

Example 1. Let us consider a simple example problem (Enright and Pryce,
1987) with the coding needed for its solution by the NODE. The test problem
has n = 2 equations:

vi = —y1 — h1y2 + 294y,
Yy = —3yz +0.01020408(1 — y2)y1

on the interval from ¢t = 0 to 240, with the initial conditions y; = 1, y2 = 0.

910
920
930

10

double precision t, tk, h, hm, ep, tr, y, £
external rp, drp

dimension y(2), £(40), m(2), ms(11)

data ms/0, 0, 0, 0, 0, 0, O, 0, 0, 0, O/
format (1x,4d15.7)

format (1x, ’Number of RP calls with NODE = ?’, i10)
format (1x, ’Number of DRP calls with NODE = *, i10)
n = 2

t = 0.d0

tk = 240.d0

h = 1.d4-2

hm = 1.d-12

ep = 1.d-3

tr = 1.40

y(1) = 1.d0

y(2) = 0.d0 \

write(*, 910) t, (y(j), j = 1, n)

continue .

call node(ms, n, t, tk, h, hm, ep, y, f, m, tr, rp, drp)
write(*, 910) t, (y(j), j =1, n)
if (dabs(t - tk) .gt. 1.d-12) goto 10

The program NODE for solution of ODE stiff systems 99

write(*, 920) ms(7)
write(*, 930) ms(8)
stop
end

subroutine rp(n, t, y, f)

double precision t, y, £

dimension y(1), £(1)

£(1) = - y(1) - y(1) * y(2) + 294.d0 * y(2)

£(2) = -3.d40 * y(2) + 0.01020408d0 * (1 - y(2)) * y(1)
return

end

subroutine drp(n, t, y, a)
double precision t, y, a
dimension y(1), a(n, 1)
a(1, 1) = -1.d0 - y(2)
a(l1, 2) = -y(1) + 294.40

a(2, 1) = 0.01020408d0 * (1.d0 - y(2))
a(2, 2) = -3.d0 - 0.0102040840 * y(1)
return
end
Output
t yi y2

0.0000000D+00 0.1000000D+01 0.0000000D+00
0.2400000D+03 0.3913376D+00 0.1330194D-02
Number of RP calls with NODE = 46
Number of DRP calls with NODE = 8

Example 2. The NODE was used to solve the so-called Robertson problem

yi = —0.04y; + 10%y,ys,
y’2 = _y; _U's,
y3 = 3-107y3

on the interval from ¢ = 0 to 10, with the initial conditions ¢ =1, y2 = 0,
ya =0.

double precision t, tk, h, hm, ep, tr, y, £
external rp, drp

dimension y(3), £(66), m(3), ms(11)

data ms/0, 0, 1, 0, 0, 0, 0, O, O, 0, O/

100 E.A. Novikov

910 format(ix,5d15.7)
920 format(ix,’Number of RP calls with NODE = ?, i10)
930 format(1ix,’Number of DRP calls with NODE = ’, i10)

n =3

t = 0.d0
tk = 10.d0
h = 1.d4-6
hm = 1.4-12
ep = 1.d4-2
tr = 1.d-5
y(1) = 1.40
y(2) = 0.d0
y(3) = 0.40

write(*, 910) t, (y(j), j = 1, n)
10 continue
call node(ms, n, t, tk, h, hm, ep, y, £, m, tr, rp, drp)
write(*, 910) ¢, (y(j), j = 1, n)
if(dabs(t - tk) .gt. 1.d-12) goto 10
write(*, 920) ms(7)
write(*, 930) ms(8)
stop
end

subroutine rp(n, t, y, f)

double precision t, y, f

dimension y(1), £(1)

£(1) = -.04d0 * y(1) + 1.d44 * y(2) * y(3)

£(3) = 3.47 * y(2) * y(2)
£(2) = -£(1) - £(3)
return

end

subroutine drp(m, t, y, a)
double precision t, y, a
dimension y(1), a(n, 1)
return

~end

Output

t yi y2 y3
0.0000000D+00 ©0.1000000D+01 0.0000000D+00 0.0000000D+00
0.1000000D+02 0.8406192D+00 0.1619187D-04 0.1593646D+00

Number of RP calls with NODE = 91
Number of DRP calls with NODE = 0

The program NODE for solution of ODE stiff systems 101

References

(1]

(2]

[3]

4

(5]

[6]

7]

(8]

[9]

Novikov V.A., Novikov E.A., Umatova L.A. Frezing of the Jacobi matrix in
the Rosenbrock type method of the second order accuracy // Proc. BAIL-IV
Conf. - Bool Press, 1986. — P. 380-386.

Novikov E.A., Shitov Yu.A., Shokin Yu.I. One-step iteration-free methods of
solving stiff systems // Soviet Math. Dokl. - 1989. — Vol. 38, Ne 1. — P. 212-216.

Novikov E.A. Construction of the (m, k)-methods for the solution of linear sys-
tems of ordinary differential equations // Mathematical models and tools for
Chemical Kinetics. AMSE Transactions ‘Scientific Siberian’, Series A. - 1993. —
Vol. 9. - P. 88-103.

Novikov E.A., Golushko M.I., Shitov Yu.A. The freeze of the Jacobi matrix in
the (m, k)-methods of order three // Advances in Modeling & Analysis, A. —
AMSE Press, 1995. - Vol. 28, Nz 1. - P. 41-64.

Novikov E.A., Golushkb M.IL, Shitov Yu.A. Approximation of Jacobi matrix in
the (m, k)-methods of order three // Advances in Modeling & Analysis, A. —
AMSE Press, 1995. — Vol. 28, Ne 3. - P. 19-40.

Novikov V.A., Novikov E.A. On the accuracy and stability control of one-step
methods of integration of ordinary differential equations // Proc. BAIL-III
Conf. — Bool Press, 1984. — P. 81-93.

Novikov V.A., Novikov E.A. Control of the stability of explicit one-step methods
of integrating ordinary differential equations // Soviet Math. Dokl. — 1984. -
Vol. 30, Ne. 1. — P. 211-215.

Novikov E.A. Construction of algorithm for the integrating stiff differential
equations on nonuniform schemes // Soviet Math. Dokl. —~ 1984. — Vol. 30,
Ne 2. - P. 358-361.

Novikov V.A., Novikov E.A. Explicit methods of Runge-Kutta type with adap-
tive stability region // Proc. BAIL-V Conf. — Bool Press, 1988. — P. 269-276.

