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Special models of non-stationary random
processes and non-homogeneous fields*

V.A. Ogorodnikov

In this paper some methods of statistical simulation of non-Gaussian non-stationary scalar
and vectorial processes and non-homogeneous spatial fields with continuous argument on
the basis of synthesis of discrete models and models on point fluxes are considered.

Introduction

The most known technique to simulation of non-stationarity and non-
homogeneity reduce to the use of spectral parameteric models, in which
parameters are some functions of time [1]. Covariance functions of such
processes depend on two variables (for spatial fields these variables are
vectorial), and in addition one of them is time increment. If analytical
expressions for such functions are known, then the corresponding spectral
representation is selected and this representaion determines the algorithm
of simulation. Another way for simulation of non-stationary processes, for
example, of non-stationary discrete sequences, is simulation of autoregres-
sive sequences with the coefficients depending on time. In some cases one
may use the methods, based on simulation of periodically correlated non-
stationary processes [2].

For many applications a peculiarity of simulation is that observation
data of the investigated process are the original information for a model.
The estimate of correlation structure is made at fixed time points, so for the
use of spectral parametric models, it is necessary to approximate the corre-
sponding correlation matrix by some positive definite analytical functions
of a proper number of variables. In practice the structure of correlation
matrices may be rather complicated, so it appears difficult to find a suitable
approximate function.

In this paper a simple approximate approach, which allows to avoid
these difficulties and take into account in the model the change in time and
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space not only correlation properties, but also one-dimensional probability
distributions, is considered.

1. Stochastical joint of independent random
vectorial sequences

This approach is based on a stochastical (randomized) joint of random
processes, given on some sequence of disjoint intervals [3]. The process
inside each time interval has one-dimensional distribution and correlation
structure peculidr only to this interval. For simplicity, we will restrict
ourselves to the joint of two random vectorial sequences of finite length.
The joint of some several sequences is done by similar way.

Let us consider two independent from each other non-Gaussian vectorial
sequences
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with the block covariance matrices
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Lwi=1,....,k+v,
I’E:}I-m ) = M(rsm) = ﬁ§x+m ) Cikames) — ﬂ{k.}m )= (0(2)
L, j=k+v+1,...,2k+m,
ﬁ{ﬁr,) = ME&4u), “Igi?l-m—v) = M(k4m-1)-
Here E;-, t=1,...,k+v and E}, j=k+v+1,...,2k + m are vectors

& = (Einyererbip)T, C-; = (Cj,l,---,Cj,p)T with the mathematical expecta-
tion M§; = jit), M(; = ji® and one-dimensional probability distributions

- 1 T -
F)(z) = (F(@),..., FO()T, FO(z)= (FP(a),..., ()T,
and covariance matrices
M(E - V)& - @) =6, MG~ NG - D) =oD.

The sets of distributions for each component of vector E(H,,, and E(Hm_y)
we represent in the form of a vector for simplicity of the record. In the
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(1)

general case, 0;;

(2

and o;;" are square p X p block of the block-covariance
-(2)

&y (1) (2)
main diagonals of these matrices, correspondingly. Index (l) ln the round
brackets, for example, (I) = (k + v), denotes that the vectorial sequence
consists of ! vectors and the block matrix — I x [ blocks.

The procedure of stochastical joint of realizations of the sequences
.S_EHV) and E(Hm_,,) reduces to the following:

matrices I‘((ki ) and K and the matrices o;;’ and o;; are on the

(i) relization of integer random index v from the interval [1, m] with prob-

m
abilities P(v = 1) = p;, 3, pi = 1 is choosen;
=1

(ii) out of two independent sequences E-Ek_,_,,) and E(k_,_m_,,), the sequence

= =T =T T - - T
T T
€ (2kym)= (51 oo a£2k+m) = (f{k+u) , C(k+m_u))
e T cT &T &T ~T ~T ~T ~T T
:(‘fl L ?‘gk"fk-{-l! Ty fk-}-w Ck+u+11 Ty <k+m1Ck+m+11 e 1C2k+m)
is formed.

We choose the numbering of indices of the sequences E-(k.,.,,} and C}Hm_y]
such that after their joint the numbering of indices in this combined se-

quence £(2k +m) would be through, with the joint being carried out within
the interval of values of indices v =k +1,...,k+ m.

Consider the main properties of the constructed sequence. In ac-
cordance with (i)-(ii) consider integer random index A from the interval
[1,...,2k 4+ m] with probability distribution

0, i=1,...,k,

i
POA<)=8i=¢ > pi, j=k+1,....,k+m,

i=1

1, j=k+m+1,...,2k+m.

In these notations one-dimensional distributions F(:c) for elements of the
sequence §(2k+m) will have the form

F(z)= (1= 6;-)FV(2) 4+ 0,, F(z), i=1,....,2k+m. (1)

Note that two-dimensional probability distributions Fj; pq(,y) of p-th com-

ponent of the vector E-,- and ¢-th component of the vector fj for i,7 =
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k+1,...,k + m are expressed by 6;, 8; and, also, by the given one-
dimensional and two-dimensional distributions F‘-{l)(a:), Fj(z)(:r), Figl)(:c,y),

F;(j,-z)(x,y) of the components of the sequences f—'(k+,,) and E(Hm_‘,). The
block elements o;; of the covariance matrix

K(zk+m) = M(£(2k+m) - ﬁ(2k+m))(£(2k+m) - ﬁ(2k+m))T = (O‘s'j)a
i,7=1,...,2k+ m,

where ﬁ(% wmy =M E(Q,H_m) satisfy the following relations:

0y = Oiiyh = (1 - 9-‘+h—1)0§,ﬂrh + 9"—1".!,":-1,;;

4 6;1(1 = Bippon) (AP — g (F® — g7, (2)

aﬁ:a‘-j, h=0,1,....m, i=1,...,2k+m— h.
The covariances within the interval v = k — h,...,k + h will be called the
smoothing functions. The class of these smoothing functions is determined
by the corresponding elements of block covariance matrices K ((;L) and

-(2)
K (k+m—v

In particular, if p; = p = 1/m, and matrices Ix"[(;lp) and K ((:l_m_y)
are block-stationary, then elements of block matrices as functions of ¢ are
polynomials of the second degree with respect to i. If (1) = (), tHen
expression (2) essentially simplifies and within the interval ¢ = 1,...,2k +
m — h it is a linear function with respect to 7. In the block record this

expression has the following form:

)2 and, also, by the probabilities p;.

oiith = (1 - 9.4};-1)(?}2,_,,, + 9.'-16'}22,.,,, (3)
0, j=1,...k
o) i-k
] = T, J=k+1,...,k+m,
1, j=k4+m+1,...,2+m,

h=0,1,...,m, i=1,...,2k+m— h.

If the process is built by the joint of non-stationary sequences of finite
length, then some esential simplifications are possible. Let §;,) and

—

§(k+m—v) be two cross-independent sequences with the covariance matrices

K((g_u) and K ((zim_y), v = 1,...,m. Since v is an integer random quantity,
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then the maximal block dimension of the matrices A ((;_)H; and K ((:?l_m_y) is
equal to k 4+ m and minimal dimension is equal to k. It 1s natural in some
applications to take block elements in each of these matrices, correspond-
ing to the points ¢ and i + h from the interval £ + 1,...,k + m as equal
to each other, i.e., agl-lrh = Ufii_h = 0, ;+h- For example, if non-stationary

1,1
I "((ilm) and ] ’({:').*m“’ are estimated by the data of many year observations,
then for calculation these matrix elements the quantity, related to the same
points of the interval k + 1,...,k + m are used, and, hence, corresponding
elements of these matrices coincide. In the case 71 = @?) = 7 (2) may

be written down in the following form:
Oii+h = (1 - 0;'.._],__1 + 9;_1)&i‘i+k, h = 0, 1,. vay 1N, 1= k,...,k +m — h.

Thus, the error of smoothing is determined by values of the probabilities
Oivn-1 — i1

If the Gaussian stationary sequences with zero expectation and with
some different correlation functions provided that p; = p, ¢t =1,...,m are
joint, then the smoothing functions are determined by the linear relation
(3). For p; # p; these smoothing functions are nonlinear. One-dimensional
distributions are a mixture of the corresponding normal distributions. Note,
also, that each realization of the constructed sequence is the joint of inde-
pendent realizations of limites length sequences, therefore abrupt changes
of simulated quantities are possible at the boundary of the joint.

2. Mixed models of random processes and fields

In this section, a simple modification of the methods of random processes
and fields simulation based on point fluxes [4] will be considered. This
modification is based on mixing these models with discrete models described
in [5].

As an example, consider a simple case of such combination. Let us
consider the following procedure of construction of a random process [6].

(i) In the interval (0,7") the grid points t; = 0, t3, ..., &, = T are
arbitrary fixed. At these points a discrete random sequence £(t;),
£(t2), - - ., &(n) with given one-dimenaional distributions Fy(,)(z) and

a covariance matrix K(;,t;), {,j =1,...,n is simulated. The matrix
K(ti,t;) can be either stationary (Toeplitz’s), or non-stationary.
(i1) In every interval (#1,t3), (t2,%3), ..., (tn-1,tn) @ random point z;

is simulated with the respect to the probability density fi(z), = €
(tiytiz1). These points form a random point flux and are random
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boundaries of the intervals (z;,z2), (z2,23), - -, (Tn-2, Tn-1), inside
which the points t3, ..., t,—1 are contained. The intervals (t1,21)
and (zn_1,1,) are adjoining to boundaries of the interval (0,T).

(iii) For every interval (i, Zi4+1) we take £t)=€(t:),i=2,...,n—1. For
the intervals (f1,21) and (ta—1,1) we take £(1) = (1) and £(2) =
£(tn) respectively. :

The covariance function
K2, ") = ME(ER") - ME(YME(R")

of the process £(1), t € (0,T) for the values t' = t; and t" = ¢; obviously
coinsides with the given covariance matrix K(t;,t;) for an arbitrary prob-
ability density of random values z; in the interval (t;,%i41), i,J = 1,...,7.
For values t # t; a one-dimensional distribution F¢(;)(z) in the general case
depends on the distributions Fy(;,)(z) and density and fi(z). In particular,
if F{(t;)(m) = F(.’p‘), then FE(,)(:E) = F(:L‘)

The covariance function K(#,t") for ¢’ = t;, t” # t; depends on two
dimensional distributions of the corresponding pair of random variables z;
and z; and also, on the covariance matrix K (tiyt;)-

As an example, consider the following process £(t). Let

ti=1, F(z)=F(z), zi=i+a, 1=1,...,n, (4)

where o is a random variable, uniformly distributed in the interval (0,1).
Construct a realization of a process £(t) according to the above considered
procedure (i)—(iii). For simplicity we take M£(t;) = 0. Then the covariance
between values of the process £(t) at the points ¢ = i+ 7' and t" = j + 7",
where 7 > 7', 7, " € (0,1), j = 1,...,n, has the following form:

Me)E(") = Kt t") = (1 - t")o? + (" - t)K(i,5) + t'ol.  (5)

Here 0? = M£?, K(i,j) is a given covariance matrix of the sequence &.
ft'=tt"=t+h, o} =0?=1, then

K[i+7,(j—1)+t+h] = K[i,(j— 1)+ k] = (1 - h) + hK (i, ]).

In the given case, a covariance function is independent of ¢, hence it can be
used for approximation of covariance matrices both of the stationary and
non-stationary types. If a is a random quantity distributed in the interval
(0,1) with the density f(z) = 2z, then the covariance function K (t',t")
depends also on t (t' =1, t" =t+ h)
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K{,t")= K[i,(j-1)+t+h] =1-(2th+ [l - K(3,5)].  (6)

The selection of random points z; in the interval (%;,%;41) can be re-
alized by different methods, dependently or independently, with the same
distribution density or with different ones, etc. All these transformations
determine a family of covariance functions, approximating a given covari-
ance matrix K(#;,¢;) and coinciding with it at the grid points.

Consider one interesting particular case [7]). Let us in (4), t; = i,
z; =i+a,i=1,2,..., where @ be a random uniformly distributed variable
in the interval (0,1), and & be a stationary random discrete process with
a correlation function R(i,j) = R(Ji — j|) = Rk, k = 0,1,..., Ro = 1.
According to the procedure (i)-(iii) and based on the above-mentioned
conditions (4), where i = 1,2,..., construct a random process £(t) in the
interval (0,00) and write down the correlation function of the constructed
process. Consider the interval (z,2+1). The correlation coefficient between
values of the process £(t) at points ¢’ and t” € (¢, + 1) has the form

R, =0Q-")+({" -1t )Ry + 1.
Take t" =t' + h, h € (0,1). Then
R(¥',t")=(1-h)+ hR;.

Since variable a is the same for all intervals (note that z; are points of a
regular point flux), then the correlation coefficient between values of the
process at the points t' € (i,5+ 1) and t” € (i + k,i+ k + 1) is equal to

R({t',t")=(1—=h)Rx + hRiyr, R €(0,1).
Take t” = t' + 7, where T = k + h, k = entier(7). Then

R(t’,t”) =R, +7)=(14+k—1)Ri + (7 — k)Ri41 = R(7),

k = entier(7).

(7)

The constructed process £(t) is a stationary one. The correlation func-
tion of this process in a non-negative definite, piecewise-linear function,
which coincides with the given values of the correlation function Rj for
k=0,1,2,....

Thus, the following statement is proved:

Statement. If a function of a discrete argument R(k) = Rk, Ro = 1,
k=0,1,2,..., is a non-negative definite function, then the function R(t) =
(14 k= 71)Ri + (7 — k)Rr41, k = entier(7) is a non-negative definite one.
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By analogy it is shown that this property is valid also for the processes,
whose argument values are changing on bounded intervals. The considered
property in some cases can be used in applications for a piecewise-linear
approximation of sampling correlation functions. Note that in terms of the
considered technique it is impossible to find another approximation of a
discrete correlation function and in so doing not to infringe stationarity of
the process, because the unit factor, determining the behavior of correlation
dependence is a distribution of a random variable o in the interval (0,1).
It is easy to show that the sample of a variable a with a non-uniform
distribution density results to non-stationary of such a process. In paper
[6] it was shown that the spectral density of the process £(t), t € (—oo, o0)
with the correlation function (7) has the following form:

FO) = 29N A, (8)

where

is the spectral density, corresponding to the process with triangular corre-

Jation function
1-7], |rl<1,
R(r) = (9)
0, |7 > 1,

and fi()) is a periodic continuation of the spectral density f(A) in the form

A(A) = (1 +2§:Rk cosAk). (10)

k=1

Relation (8) proves the existence of the piecewise-linear approximation of
the correlation function Rj under condition of the uniform convergence of
series (9), i.e., if Y50, |Rk| < 0. Note that in the proof of Statement 1
only existence of a discrete process is required.

In conclusion consider a generalization of this method for the simulation
of non-honogeneous and non-isotropic non-Gaussian random fields £(z),
determined at an arbitrary point z € R™ of the domain D € R™, with
a covariance function K(z’,z") coinciding with a given covariance matrix
K (z;,z;) at fixed points of the domain. According to the method, described
in [3], consider the following technique of construction of the field on a
regular grid.

(3) On each coordinate axis in R™ regular grid points r}:), i=1,...,m,

k = 1,...,p, such that ""53-1 - r}:) = Ar, determining the regular
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grid with p™ points, are sampled. At these points a realization of
a discrete random field £(r;) with a given distribution F¢(z) and
covariance matrix K(rg, ), ¢,1=1,... ,p™, is constructed.

(jj) In each interval (r),r{) ) a random 2\ is sampled. In this case
"2-3-1 € (32)!32-}-1 .

(iij) In each ¢ cuboid, with the vertex formed by adjacent points of grid
with coordinates msk), one takes

fr)= &), mi= (1, rM)T

In particular, if m = 2, Ar =1, r?} = i, rg'z) = 7, z?) =i+ o,
x?’ = j+ay 2y € 0,1), i3 = 1,..., %, where a; and az are
independent random values, uniformly distributed in the interval (0,1),
then

KGi+o, h+¢iia+2" 52+9)
= (1 - I")(l - y”)a?]j-[ + y’(l - w”)agjjg + (1 - y”)x'aizg.‘h + z’y'a?gjg

+ (=" (" - ¥)K (i, jr362,02) + (1 - y")(z" — &) K (41,4132, 51)

+y/(z" - 2")K (ir, Jas 12, 52) + 2'(8" = 'K (i2, j1; 12, J2)

+ (" = ¥ )" - 2')K (ir, ji; 82, J2)-

If a grid is irregular, one of simple algorithms can be constructed on the

basis of the well-known algorithm of simulation of homogeneous isotropic
fields [4). Consider the case for m = 2. Let z;, i = 1,...,9, be the

coordinates of fixed points in domain D in R? (any modification of method,
proposed in [4], is considered).

(1) At the points z1,...,%q realization of a discrete fields £(z;) with
one-dimensional distribution F¢(u) and a covariance matrix K(z;,2;),
i,j=1,...,q,18 simulated.

(1) On aline z along an isotropic direction & the projections of the points
z;, determining the set of the intervals (2, zi41) are found. In each
interval a random point #; is sampled, so that zi41 € (tistigr)-

(ll1) At the points ¢, t = 1,...,p — 1, the lines, perpendicular to & are
constructed. In each subdomain D; of the domain D, bounded by the
lines passing through ¢; and t;4; one takes £(z) = §(zi)-

Unlike the method considered in the previous section, a covariance
matrix of the thus constructed field depends on all elements of the matrix
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K(z;,z;). Note that considered methods are easy to generalize to a case
of vectorial and spatial-time random fields. These algorithms are used for
the construction, in particular, of non-homogeneous fields of daily amounts
of rain precipitaion and non-homogeneous fields of the sea currents.
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