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Spectral models of _
vector-valued random fields

S.M. Prigarin

Numerical models of vector-valued random fields are extensively used in solving applied
problems [1-5]. These models have become the subject of many investigations {6-13]. The
paper deals with methods of numerical modeling of homogeneous vector-valued random
fields based on the spectral decomposition. General relations for spectral models are
obtained and particular algorithms for simulation are presented here.

1. Spectral representations
1.1. Let w(z) be a complex vector-valued homogeneous field

wi(z)
w(z) = , w(z)€C, r=1,...,s "EERI‘!

wy(z)
with mean zero and (matrix-valued) correlation function
K(z) = Muw(z + y)w*(y)
= M[Rew(z + y)(Rew(y))” + Imw(z +y)(Im w(y))"
+ i{~Rew(z + y)(Im w(y))T + Imw(z + y)(Rew(y))T}].

For a vector ¢ € C* the scalar random field ¢*w(z) is homogeneous with
the correlation function ¢*K(z)c.
If the field w(z) is continuous in mean square, then [14]

K(z) = / exp(i(z, \)F(dA), (1.1)
Rk
where  F(A) is the matrix-valued spectral measure in R*, i.e., for any

measurable set A C R¥ the complex-valued (s,s)-matrix F(A) is posi-
tive definite (hence, F(A) = F*(A), Re F(A) = (Re F(A))T, Im F(A) =
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—(Im F(A))T), and for any vector ¢ € C* the function of sets c*F(A)c is
a finite measure in R¥ (evidently, it is the spectral measure of the field

c*w(z)).

Some properties of a correlation function are- presented below:

1) K(0)= F(R®),

2) K(z)= K*(-x),

3) K(2)K*(z) < K*(0),

4) [K(z)- K(W)[K(z) - K(y)]<K(0)[2K(0) - (K(z - y) + K*(z - 9))]-

Properties 2)-4) may be obtained as a sequence of positive definiteness
of the correlation function. If the measure F(A) is absolutely continuous
with respect to the Lebesgue measure in R, then

JO) = (X)) = [Fre(dN)/dA]
is called the matrix-valued spectral density and
§) = @)™ [ exp(=ile, K (dz). (1.2)
R

The spectral representation of the field w(z) is of the form (see [14])

w(z) = / exp(i(z, N 2(dN), (1:3)
Rk

where z(A) is the vector-valued spectral stochastic measure in R*. The
spectral stochastic measure satisfies the followirig properties:

1) Mz(A) =0,
2) if Aj N Az =0, then 2(A; + A) = z(41) + z(A2),
3) Mz(A)z*(B) = F(An B), i.e,,
Re F(A N B) = MRe z(A)(Re 2(B))T + MIm z(A)(Im z(B))7,
Im F(A N B) = M[~Re z(A)(Im 2(B))T + Im 2(A)(Re 2(B))T].
From 3) follows that if 4; N A; = 0, then
Mz(A1)z*(Az) = 0. (14)

1.2. For the vector field w(z) to be real-valued it is necessary and sufficient
that
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2(A) = Z(~A), and in this case F(A) = F(-A) = FT(—4).  (L5)

From the orthogonality property (see [4]) of the stochastic spectral measure
2(A) it follows that if AN —A =@, then

Mz(A)T(4) = 0. (1.6)
Thus, under assumption A N —A4 = @, we have

MRe z(A)(Re z(A))T — MIm 2(A)(Im z(A))T = 0,
MRe 2(A)(Im 2(A))T + MIm z(A)(Re z(A))T

Il
L

_a.nd, therefore,
MRe z(A)(Re z(A))T = MIm 2(A)(Im z(A))T = Re F(4)/2,
~MRe z(A)(Im z(A))T = MIm z(A)(Re 2(A))T = Im F(A)/2.

Spectral representations of the real vector-valued field w(z) and its corre-
lation function may be written in the form

w(z) = z{0} + 2/cos(r,/\)Re > z(dA) = sin(z, AMIm > 2(d))
P

(1.7)
= ]cos(x,A)Re > z(dA) = sin{z, A\)Im > 2(d)),
R
K(z) = F{0} +2 ] cos(z,A)Re, F(d)A) - sin(z, A\)Im , F(d))
P (1.8)
= / cos(z, \)Re > F(dA) - sin(z, )Im > F(d)).

R

Here P is a half-space of R*, i.e., P is a measurable set such that P N
(=P) =0, P+(-P)+{0} = R*. For the spectral density of the real vector
field we have

f(A) = (271')_"‘( j cos(z, \) K (z)dz + i] sin(a:,A)K(:n)da:). (1.9)

Rk R*
Remark. If a random field has a real-valued correlation functioﬁ, then
it does not mean that the field is a real-valued one. A simple example

is presented below. Let z be a complex-valued random value such that
Mz=0,M2z2=0
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M(Rez)?= M(Imz)*=A, M RezImz=0.
Consider the random processes
u(z) = exp(iAz)z + exp(—iAz)Z = 2(Re z cos(Az) — Im 2z sin(Az)),
v(z) = exp(idz)z — exp(—iAz)Z = 2i(Im z cos(Az) + Re zsin(Az)).

One of the processes is purely imaginary and the other is real-valued, while
both of them have the same correlation function

K(z) = Acos(Az).

2. Isotropic fields

The homogeneous complex vector-valued random field w(z) with correlation
function K(z) is said to be isotropic if

K(z)= K(Vz) = B(||lz|), =z €R*, (2.1)

for any orthogonal transformation V (i.e., v is a combination of rotations
and reflections). For the isotropic field we have F(V~1A4) = F(A) and
K(z) = K*(z).

The spectral representation (1) of the correlation function of the
isotropic homogeneous field may be written in the form (see [14, 15]).

o0

B(p) = j Yi(19)G(d7), |
J (2.2)

Yi(a) = 26-9/20(k/2)(a)" D2 _y) (),

here J,, are the Bessel functions of the first kind and G(B) = F(||A|| € B)
is a matrix-valued measure in R. Note that

Yi(a) = cos(a), Ya(a) = Jo(a),
Ys(a) =sin(a)/a, Yi(a)=2a"1Jy(a).

If the spectral measures F' and G are absolutely continuous with respect
to the Lebesgue measure and f, g are the corresponding spectral densities,
then

9(7) = Sk(v)f(ve),
where Si(7) = (27%/2/'(k/2))y*~! is the square of a sphere in R* with
radius v and e is a unit vector. :
The transformations inverse to (2.2) are of the form [16, 17]
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Gl0,7) = 2Lk /2) [0 ua(r0)e™ K ),
> (2.3)
g(v) = 27D (k/2) / (19)*/2 T 4-2)2(10) K (p)dp.
0

For real-valued homogeneous isotropic vector fields the matrix-valued
spectral measures G and F are real-valued ones (F(A) = F(-A) = F(A))
and K(z)= K7(z).

3. Modeling of random harmonics

3.1. A complex-valued vector random harmonic
&(z) = exp(i(z,A))z, &(z), z€C’, z,A€RF, (3-1)

where z is a complex random vector with zero mean, has the correlation
function

K(z) = exp(i(z, A)) M (2z7)

and the spectral measure is concentrated at the point A

F(A) = I{} € A}M(22"),
Re F{\} = MRe 2(Re z)T + MIm 2(Im z)7,
Im F{)} = —MRe z(Im z)T + MIm z(Re z)T.
The field £(z) is homogeneous (in other words, homogeneous in narrow

sense, i.e., the finite-dimensional distributions are invariant with respect to
shifts) if and only if the random vector z has the structure

z = exp(i8)z, N (3.2)

where zg is an arbitrary complex-valued random vector, while 4 is a random
value independent of 2y and uniformly distributed on [0,27]. Obviously,
we have

Mzz* = M zzg.

A harmonic with a random frequency A and amplitude z), which de-
pends on the frequency
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£(z) = exp(i(z, A))za, (3:3)
Mz, =0, Mz2} = F(d\)/p(d)),
where ) is a random vector distributed in R¥ according to the probability

measure p, absolutely continuous with respect to F, has the correlation
function

K()= [ explite, W)F(@N)
R*
and the spectral measure F(dA).

Remark. Basically in the capacity of the measure p one may take an
arbitrary probability measure in R* absolutely continuous with respect to
F. The authors of paper [11] propose

u(dX) = trF(d))/tr F(R¥), (3.4)

where tr denotes the trace of a matrix. The value trF(R¥) may be inter-
preted as the “full energy” of the field and trF(d)) as the “energy” of the
frequencies d).

If zy = z does not depend on A, then

K(z) = M(z=") [ explife, \u(d).
Rk

3.2. Let us consider the real-valued case. The vector harmonic

6(z) = exp(i(z, \))z + exp(i(z, X)) 5.)
= 2(cos(z, A)Re z — sin(z, A\)Im z), .
where A # 0, Mz = 0, Mz2T = 0, has the correlation function
K(z) = 2cos(z, A)Re M[22*] — 2sin{z, A)Im M[zz*] (3.6)

and the spectral measure being concentrated at the points A, —\
F{\} = M[22*] = F{=)}.
The equality Mz2T = 0 means

MRe 2(Re z)T — MIm z(Im 2)T
MRe z(Im 2)T + MIm 2(Re 2)7 = 0,

I
L

and, hence,
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MRez(Re2)T = MIm 2(Im z)T = Re F{\}/2,

(3.7
—MRe2(Im2)T = MIm 2(Rez)T = Im F{)\}/2.
If .
7 p1exp(ie1) | €=
z = = ’ E(x) = ’
Zs Ps exp(ips) £(=)
then (3.5) may be rewritten in the form
€n(z) = 2pm cos((z,A) + om), m=1,...,s. (3.8)

Formula (3.8) proves to be more effective for the numerical modeling than
(3.5). A strictly homogeneous harmonic may be presented in the form (see

(38))

Em(z) = 2pm cos((z,\) + ¢ +©), m=1,...,s, (3.9)
where the value of O is independent of p,, and ¢2, is uniformly distributed
on [0, 27].

The harmonic
&(z) = cos{z, A)Re z(A) — sin(z, A)Im z(\)

p1(A) cos((z, A) + ¢1(A)) (3.10)

b}

pa(A) cos((z, A) + @a(A))

z1(A) p1(A)exp(ipi(A))
=] i |= 5 ,
zﬂ(A) p,(,\) exp(iﬁas(’\))

2F(dN)/u(dA), X #0,
F{0}/p{0},  A=0,
Mz(A)=0, Mz()\)T(\) =0,

Mz(A)z*(A) = {

where A is a random value in RF distributed according to the symmet-
ric (u(dA) = u(—dX)) probability measure g, absolutely continuous with
respect to F, has the correlation function (1.8) and the spectral measure
F(d)). Moreover, the following is fulfilled:

MRe z(A)(Re 2(A))T = MIm2(A)(Im 2(A))T = Re F{dA}/u(d)),
~MRe z(A\)(Im 2(A))T = MIm z(A)(Re2(A))T = Im F{dA}/p(d}),
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Rez(A) 1 [ Rez(A) 17 _ 1 [ ReF{dA} — Im F{d)\}
M[Imz(,\)] [Infzﬁ,\)] "m[ Im F{d)\} Re F{d\} ] (3.11)

If F{0} = 0, then in the capacity of the measure y one may take the
measure concentrated at a halfspace. In this case

Mz(X)z"(A) = 4F(dX)/p(dA),
and in the right-hand side of (3.11) coefficient 2 will appear.

3.3. Modeling of the complex-valued random vector z with mean zero
and specified covariance matrix F' = Mzz2* (with the additional condition
M 22T = 0 for the real-valued harmonics) is the basic problem for construct-
ing homogeneous vector-valued harmonics (3.1), (3.3), (3.5), (3.10). The
conventional solution of this problem consists of two stages: modeling of
the orthonormal vector £, Mec* = E and subsequent linear trasformation

z = Ae, where AA™ = F. (3.12)

In the general case, in the capacity of the orthonormal vector £ one
may take a real-valued vector. In the case of real-valued harmonics, to
obtain MzzT = 0, we must require that MeeT = 0, i.e.,

MRee(Ree)T = MIme(Ime)T = E/2,
MRe z(Im 2)T = 0.

So, the real and the imaginary parts of vector £ must be mutually orthogo-
nal, and the covariance matrices of these parts must be the same and equal
to E/2.

It will be assumed that the positive-definite matrix F is not singular.
The linear transformation A in (3.12) is uniquely defined up to a unitary
operator U: vectors A¢ and AU¢ have the same covariance matrix F.

If we require that A, then A = (F)!/2. In this case the matrix 4 may
be found by the following recurent procedure:

Ao =0, Anpr = An + (2|F|M?)Y(F - A2)

(see, e.g., [18]), or by the formula A = WDY?W*, where D is the diagonal
matrix with the eigenvalues of the matrix F' as diagonal entries, and W is
the matrix, whose columns are the eigenvectors of matrix F' (F = WDW*).

If we require that a matrix A be a lower triangular one, then it gives
us the well-known recurrent formulas for the matrix entries A,
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Ay = (Fin)2exp(ipr),

-1
A = (B =Y Andu) /Aw, t=1,..,7-1,
k=1

AT‘T

r—1 1/2
(Frr - Z tArtlz) exP(i‘Pr), r=2,...,8,
=1

(the diagonal entries of the matrix F are real), where ¢y,..., @, are ar-
bitrary real constants. The ambiguity of constructing the matrix A is
explained by the fact that the matrix

exp(ip1) 0 0

0 exp(z 0

Ax ' P(i2) . .
0 exp(ip,)

is also a lower triangular one.

4. Spectral models of homogeneous Gaussian
vector fields

Let w(z) be a Gaussian homogeneous vector field with mean zero, corre-
lation function K'(z) and spectral measure F(d)). An approximate model
wy(z) of the form

wo(z) = &(z)+... + a(z),

where {;(z) are the random harmonics considered in Section 3, will be
called a spectral model. We assume that

MEi(z)Ei(y) =0, as i # j, z,yeRE. (4.1)
Then . n
Kmy(z) =) Kjz), F@(z)= Z Fi(z).

7=1
Here Ky, Fln), Kj, F; are the corresponding correlation functions and
spectral measures of the fields w, and &;.

One may use a lot of various procedures to construct spectral models
wn(z), which ensure convergence to the Gaussian vector field w(z), as
n — oo. These procedures are well-studied for scalar fields (see [19-26]
and Appendix).

Let us present two typical models
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A. Fi(d\)= F(d\)/n, j=1,...,m
F(d)), dACA;,

n
B. R¥= Y A;, Fi(d\)=
z A _’( ) {0, dA C R* - A;.

i=1

Note that the fields w, are asymptotically Gaussian as n — oo for model
A, while for model B the following condition is sufficient:

max F(A;) — 0, as n — oo.
ign

Obviously, for both models the spectral measures F(,)(dA) of the approx-
imate fields wn(z) coincide with the spectral measure F(dA) of the limit
field w(z). This is attained by the randomized choice of the harmonic
frequencies.

5. Examples of modeling

5.1. Let v(z) be a homogeneous, scalar, differentiable in the mean square
complex-valued random field zeR¥, with the correlation function R(z) and
spectral measure u(d)). The potential vector field

w(z) = grad v(z) = [iv(a:) ey —?'—v(a:)]T (5.1)
) 8w1 ’ ail?k
is homogeneous with the correlation function

K(z)= [%1%9’%] b=,k

and spectral measure
F(dX) = [=A\Ap(dA))re=1,... k-
If the field v(z) is isotropic,
R(z) = B(|lzl)), p(dX) = 557 (v)do(y)v(dA), (5.2)

where 7 = ||A||, Sk(7) is the square of a sphere in R¥ with the radius 7,
do(7) is the area element of this sphere, then field (5.1) is isotropic in the
following sense [27]:

Muw(z) =0, Muw(z)w*(y)=V[Mw(Vz)w*"(Vy)]V", (5.3)

where V is an arbitrary orthogonal transformation in R*.

-
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5.2. In this section, the fields which are isotropic in the sense (5.3) will be
called bi-isotropic in order to distinguish this concept from the definition
in Section 2. So, the homogeneous vector field w(z)eR*, zeR¥, is called
bi-isotropic if the first and the second moments of the field w(z) coincide
with the field Vw(Vz). It means that if K(z) is the correlation function of
the field w(z), then K(z) = VK (Vz)V* for any orthogonal transformation
V.
The spectral measure of the bi-isotropic field is of the form [27]

F(d)) = S (A\)do(A) [Le(dA) + (E — L)y(dN)], (5.4)

where v = ||A||, k() is the square of a sphere in R* with the radius
7, do(y) is the area element of this sphere, E is the unit (k,k)-matrix,
L = MA\T/||A||%, ¢ and % are some finite measures on [0,00). It is easy to
verify that

Ml = ] olan) + (k= 1) [ (),
0 o

For potential bi-isotropic field (5.1) the following is fulfilled:

e(dv) = vv(dy), $(dy)=0.

If w(z) is a bi-isotropic field with spectral measure (5.4), then the scalar
field div w(z) is isotropic with the “radial” spectral measure y2¢(d7). So,
the field w(z) is solenoidal ( div w(z) = 0) if and only if ¢(dy) = 0.

The general representation of correlation functions of bi-isotropic ran-
dom fields is obtained in [27).

5.3. In two-dimensional case any correlation function of potential bi-iso-
tropic field may be written in the form

K(z) = ] [~ h2(1p)X + Ji(10)(vp)~ Ele(d),

where p = ||z||, X = zz*/||z||, E is the unit (2,2)-matrix.

Realizations of spectral models of the scalar isotropic field on the plane
with the correlation function Jo(cz) and the gradient of this field are pre-
sented in Figures 1, 2. This case corresponds to the spectral measures v,
¢ concentrated at the point 4y = ¢. More general models may be obtained
by summation of such fields of different scale (see Figures 3, 4).

A correlation function of any solenoidal bi-isotropic two-dimensional
vector field may be written in the form



S5.M. Prigarin

0

[ R R AT .IlnL...-\\...\\\\...I:\z_fff,,.\\\l:\.\\
. ~ - - - - =Nt
\- B e A —s ~- A e ~ e
N B N - N aet ey s e s o AN e g
h.-/.\\!n\..—;..w-.\\.nn..\7/¢w\\H|L /.:”!.lll,..|4.\.w..fll‘u1llf\:\.\i\
mm o TAMMIT s i Pam——" ] \\(l...:\:-.ct..‘....\.iw_ 7
—— N AL LD e e R S et
P e . . v e '
1|.//_V,,.~\.\TJI.Ai-}.||<\~ A PN et ek £ S amzaersi— e ~=7 2N
. - — - - o o~ .«...,I.“.41/— Sy LR LA S S I R
o S Ry . R N e A i SR m
.- P i vt L L R S e iy N R AR St 77 4 Lt -
R AT Ay S L RS T U A A L L o R L L
v ANNSI L A RTINS NN s v N oL -
IR —~— P - - Zoq e m = - N PR
NAAN . a8 e e TINNSNNY s o PRSI S [N ey LLL
NN S A DR LSRR PRI S A pulal Lot
X T e 2 PRI e e~ S BT
R R TS e Y ~ Tl\...,ll:...'\.—\l\\\,—\\.\\\,/..ss‘f,,
JUDRETLY, N AR NN AN pm e s e o N A

E e SN Fml DIV e o S AN ol
o b e v - s = AN
~—— f{,.ll}.\!\\sa(.)\./.!l,

r...._—.:.\\if\\\r\\\\\:_;.1.\\.r.“un
NN VRS A R A N
W e T e e~
VAN e ST I s 10T

ety AR NN S
A e FRENS
i A

L

Figure 2

'//.!nrw e m——  —— P e R T
T.,|.!]‘}| ; o~— Frbr e g AN AT LTI T A

. oo D = NI ANIITNNL TIIZT AN
IS ST ST TR [§ WA RNy N S it
I N I ~ e LT (T s A s s e
oy LINII ZIZ==L I vl N
LTI I IR e ARl R RRe an
TAANITITT L IO LT IR L T e s A L e sy
SISO e e et VYN £ L e et ¢ T
o SN i ey —— _;l//....ara.fP.ll.\\).Ia\\‘fII,lul:'\|lf,

P NN S A Y M RN Y L T A NN -

. o~ oLl B N AR e YV M L e -
R AN B e e e L

T TN P2 SR e St iR e SR

o
.
()
"

!
o
W

W

X))

¢

Y

N

iﬁ
A

R
ALY,

S

0
;,jf'l.f:;
[y

o

pt!

u;i
it

N
1

O
'!';:
)
h {
W

R

)

)
>
t'?

)
e
0
oRX
A
4
“

e
AL

R
W
U

7
¥,
{7

Figure 1
0
:‘:

:\\\\.
R
i,

TR
.r:"
5
50N
A\
o2y

",
T,
7,

Figure 4

Gaussian fields on the plane are pre-

tropic

IS0

Figure 3

56

K(@) = [{00)X + Ualr0) = hap)re) 1B} H(an).

Some realizations of spectral models of solenoidal fields on the plane are

presented in Figures 3, 6.

rograms for modeling on a @ basic language of scalar-valued and

N
alued homogeneous
sented in paper [28].

Note. P
vector-v
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Figure 6
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A correlation function of any homogeneous isotropic field w(z,y) may

be written in the form

plane, based on the the spectral models [29] and parametric models [8] are

Algorithms of modeling of homogeneous isotropic Gaussian fields on the
considered here.

Appendix. Spectral models of isotropic Gaussian

fields on the plane
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distributed on [R,-1, R,) according to the density g(p)/c; @nm, Bams Ynm
are independent random values uniformly distributed on [0, 1].
The algorithm of the modeling is in the creating of the following arrays:

A(n,m) = gep(=2(In anm )/M,)Y?%,  D(n,m) = 278um,

B(n,m) = ppcoswpm, C(n,m)= ppsinwyn,
and the value of the field at point (2,y) is calculated by formula

N M,
w*(z,y) = Z Z A(n,m)cos[B(n,m)z + C(n,m)y + D(n, m)].

n=1m=1

Model (5.6) corresponds to the splitting of the spectral space into the
rings and into the segments of equal ma.gmtude The correlation function

of model (5.6) is equal to (5.5) and if Z M, — oo and ma.x(cn/M ) — 00,

then the field w*(z,y) is a.symptotlca,lly Gau551a11

Some other versions of the spectral model are allowed. In particu-
lar the following changings in (5.6) (individually and in combination) are
acceptable

L. pPn = Prm,
2. Tnm = Tn»
3. Yom = T

where pu., Tn, 7 are independent random values with correspondent dis-
tributions. Replacement 1. may be specifically appropriate for n = N.

Algorithmically more simple, but not flexible is model (5.6), where
¢n = N~12 and p, are independent and distributed on the whole semi-axis
[0, 00) with density g(p). The programme realization of such an algorithm
is presented in [28]. The choice of version of the simulation algorithm
and its parameters is specified by the aim to represent more or less in
detail the corresponding parts of spectrum and influence on the character
of realizations w*(z,y).

The spectral models of isotropic fields were applied in [31] for heap
cloudiness simulation for statistical modeling of the radiation transfer in
the cloudy atmosphere.
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