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Numerical solution to Volterra integral
equations of the first kind by implicit
Runge—-Kutta method of high accuracy

A.O. Savchenko

The analog of the implicit Runge-Kutta method applied to Volterra integral
equations of the first kind is considered. It allows to obtain the results of high
accuracy under a sufficient simplicity and stability of used algorithm. The estima-
tion of numerical results for a fixed time step is performed. A special choice of
integration’s nodes and quadrature coefficients makes it possible to receive the er-
ror estimation, decreasing exponentially under increasing of a number of method’s
stages. That creates a good premise for using the method of high accuracy and
permits to integrate with a big time step. The stability of method to variations
of kernel and the right-hand side of the equation is proved. The above theoretical
conclusions are confirmed by numerical experiments for Volterra equations of the
first kind with different types of kernels and equivalent Volterra equation of the
second kind.

Introduction

It is known that the integral Volterra equations of the first kind refer to
the conditionally-correct tasks type. From one side, the Volterra equations
of the first kind are a special case of the Fredholm equations, and hence,
regularization methods may be applied for their stable numerical solving.
From the other side, under some limitations on smoothness of kernel and
the right-hand side of equation, they may be referred to correct type tasks
and may admit a possibility of applying the methods, basing on discretiza-
tion of initial equation. One may use also the discretization procedure as
a regularization factor for solving the equations of this type. All these ap-
proaches are not without shortcomings, since the first one may lead to loss
of volterness for regularizated equation, and others can lead to unstability
of approximate solution from errors of initial data, especially under high
accuracy methods applying.

One may be acquainted with sufficiently complete review for Volterra
equations solving in work [7].

In this work the analog of implicit Runge-Kutta method for numerical
solving of Volterra equations is chosen. This choice is not accidental because
it allows to get results of high accuracy under sufficient simplicity of used
algorithm, that distinguish such method among many ones, when the least
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solution error is required.

The implicit Runge-Kutta method was considered and applied for solv-
ing of Volterra integral equations of the first kind, apparently for the first
time, in work [3], where the convergence and asymptotic stability to the
rounding errors were proved. However, in real calculations one has to in-
tegrate often over a few fixed time step, for which the converge conditions
may be unrealized. In this case the problem of estimation of the obtained
solution for that time step value appears. Such estimation will be obtained
in this work. Moreover, there will be shown that under appropriate choice of
. quadrature coefficients and nodes one can obtain the estimation of approx-
imate error, decreasing exponentially under a growth of a number of stages
in the method, and that will allow to integrate with a big time step. Thus,
a high accuracy of obtained results will be reached not at a sacrifice of a
small time step, as a solution error decreasing, being caused by the specific
character of chosed method.

1. Statement of the problem

Consider the numerical solution to Volterra integral equation of the first
kind: .
| K(ts,u(e) ds= 1), to<t<T. 1)
to

Note that one of the main special cases for (1) is the linear Volterra equation,
that will be also used in this work:

t :
[ Mty ds=10), to<t<T. (2)
to
Introduce the grid on the segment [to, T} with the nodes ¢;:
Tt

ti=1th, i=0,...,I, h=

7
and the subgrid partition
| ti=ti+Ah, 0<A <Ag<...<Am=L1.
Let us assume that for
Vrelt,T]: |y(r)|< L, K(r,--)eC™([to,T]x[-L,L)).

In the points t;; equation (1) will be as follows:

i—1 thst ti;
Z/t K(t,'j,s,y(s))ds-l-/;_ K(tij, 5,y(s)) ds = f(ti;). (3)

k=0""k

We approximate every integral under the sum sign in (3) by the quadrature
formula
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tht1 m
/ p(s)ds~ h Z bio(tir)

t I=1
and the rest integral in (3) by the formula

ti; m
-/t- p(s)ds ~ hIZbﬂcp(t;;).
' =1
Then, under approximation of (3), we obtain the following system of equa-
tions:

-1 m m

D D BB (ti, te, Yid) + Y hbjuK (b, ta, Ya) = fijy (4)

k=0l=1 i=1

i=0,...,]-1; j=1,...,m,

where f;; = f(t;;), and Y), denotes the finite-dimensional approximation for
Y(tpq)-

In the work [3], it was proved that under the following conditions for
problem (2):

f(t) € C™F2[to, T); k2, 5) € C™+¥([to, T] x [to, T]);

k(t,t) # 0 for t € [to,T], and det(B) # 0, where B = (b;;), scheme (4)
converges with the order m, i.e.,

lles]| £ CA™, C =const, i=0,...,]—1.

Here &; = (€i1,...,&im), & = Yi; — y(ti;).

The numerical stability of the method was also proved, when the values
Yo;, 7 =1,...,m, were calculated with errors.

These theorems may be unconstructive in practice, because often we have
to calculate with a fixed time step h, or to decrease it until some limited
value hg, for which the theorem conditions may be invalid. By virtue of
that, the problem of estimation of the numerical solution error for the fixed
time step h appears.

In this work, such estimation, together with estimation for quadrature
formula (4), under a special choice of subgrid nodes and quadrature coeffi-
cients, will be obtained. The analysis of error variation under increasing of

method stages m (this is the number of subgrid nodes), also will be carried
out.

2. The approximation error on segment [t;, t;;]

Consider the approximation error for the integral

ti;
T = [ Kty s,(6)) ds,
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by the quadrature formula

m
Lj=Y_ hbyK(tj,ta,Ya), j=1,...,m
=1

We have

Jij — Lij = > hbju(K (tij, ta, ya) — K (ti5,ta, Ya)) + hpij,
=1

where

1
Y = y(ta.l) Pij = E(/ K t_;l!s y( )dS - Ehb lI((t:;n ily yd))
=1

Since the function K(t, s, z) has the continuous derivative by the last value
in the region of changing the former ones, we obtain:

Zhbﬂ I{ t’uyt:h y:f) I{( 171 117 :.l' ) - Zhbglkuf(ytf ﬂ)a
=1 =1

where Kt
OK(t 2,2) v & € [Ya, yal.
0z (tij tinnka)

To find the values p;;, and accounting that K(t,-,-) € C™([to,T] x
[—L, L)), we expand the kernel of the integral J;; in the Taylor series:

kij =

m—1
Kt 9(6) = Y 7KW (3,0, u(0) (s — 1) +

k=0

1 m
EK(’”) (tijy iy y(7)) (s — i)

where 7; € [t;,t;4+1]. Then

- Z (k-i—l K (ttjatny )(h)‘j)k+1+

_1__
(m+1)!
From the other hand,

K™ (45, i, y(m3)) (RA;)™ .

Z hbji K (ti;, tir, yir) Zhbﬂ [Z Tc—lK(k)(tij, ti, y(t:)) (RA)* +

=1 k=0
EI{'(m) (tija Tiy y(T‘»))(h‘AI)m]
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m~1 h m
= 2 EW st u(t)) 3o bu(h)k +
k=0 7" -1
h m
mff(m) (tiis i y(m)) Y bja(hA)™,
' i=1
Form here we obtain
m—1 hk " hm
pii= . ?K( Ytisoti, y(t:))85n + Ei’K(m)(tij,Ti:y(Ti))ijy (5)
=0 ¢ !
where
1 m
Sk = A S ppkE k=0,...,m. (6)
! (k + 1) ! i=1

Choose the quadrature coefficients b;; such that Sjk=0,fork=0,...,m—1.
Then we obtain the following system of equations:
1

k-1
BA" e P

AFe, k=1,...,m, (M

wh;'-.-re B = (bj]),‘ A = diag(A1,...,Mm), e = (1,...,1)7, and this formula
may be rewritten in the form:

BW = AWL, 8)

where L = diag(1,1/2,1/3,...,1/m), W is the Vandermonde matrix:

1 A A LA
w1l 2 A ...y
1 Ay A2 ... Amt

Because all the nodes A; are different, the matrix W is nonsingular and the
system of equations (8) has the unique solution.
From (5) and the special choice of the coefficients b;;, we have

h™ )
pij = ;,EK("‘ (tij, i, y(73)) djm. (9)

Now we find the error §,, = (b1my- vy Omm) T, denoting it in explicit form as
a function of subgrid nodes ;.

We choose the nodes A; to be equal to the nodes of the highest accuracy
Radau quadrature formula with the fixed last node A,, = 1.

For the matrix A, from the Cayley-Hamilton theorem, we have



86 A.O. Savchenko
A" =) g A, (10)
i=1

where ¢; are the coefficients of the characteristic polynomial for the matrix
A. In the work [2] the values g; for the above choice of nodes were found in

the explicit form:
m\> /(2m -1
q,-=(—1)f-‘(j) /( ) ) (11)

Multiplying both parts of equality (10) on matrix B from the left-hand side,
and on the vector e from the right-hand side, we obtain

m
BA™e =Y ¢;BA™ e
J=1

From the other hand, multiplying both parts of the same equality on the
matrix A and vector e, we have

m
Amtle = Z qum—jHe_
i=1
Hence
1 i : 1 .
0m = BA™e— ——A™le =" g;(BA™TT - ——A"TIH
m ¢ m+1 € ng q,( m+1 e

and, taking into account the system of equations (7) and equalities (11), we
have

m 2 _ -1 .
5m=2(-1)1'-1(j) (2 j 1) (m-1j+1“m1+1)Am—J+le' (12)

i=1

Carrying out the substitution of indexes k = m — j+ 1 in (12), and using
the identity (, %.,) = (,7,), finally, we obtain

1 & o m\[ 2m-1\"m-k+1,
6’”‘_m+1k§(_1) (k—l)(m—k-i—l) Pat

The explicit dependence for the norm of the vector é,, from the stage number
m will be considered below.
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3. The approximation error on segment [tk trt1]

Consider the approximation error for the integral

thy1
J® = /; K(ti;,s,y(s)) ds
k

by the quadrature formula

m
Igf) =3 hbiK (ti, thr, Yar).-
=1

Applying the same calculations as in the previous item, we obtain

J,-(f) - Ig" = hbikiju(ys — Yar) + ki,

=1
where
- 0K(t,s,z2)
Riwt = —5 v Eu € [Yi, yw),
" 0z (b tas i) &t € [Yits g

1 it m
Mijk = E(-/t K(tij, s,y(s)) ds — Y hbiK (t;;, tu, ykz))-
k ‘ I=1

Since tx = tx + Ath (A; corresponds to the nodes of the quadrature Radau
formula choosed in previous item), it will be natural to suppose the quadra-
ture coefficients ; equal to the same ones in the Radau formula,

Using the method of finding the remainder term for the Radau formula
under integration over the segment [—1, 1] discribed in [1], and modifying it
for an interval of arbitrary size, we obtain

. 2m-1
ijk = P(m)mff(z""”(tiﬁ zk,y(2x)), (14)
where zj € [tk, tx41] and
_ 1 (m)? 2
P(m) = 2m3((2m— 1)!) . (15)

4. The estimation of the error IEA]

When we have obtained the approximation errors for all integrals in (3)
by their quadrature analogues in two previous items, we begin to find the
estimation of the error ||&;]|.
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Subtracting equalities (4) from (3), we arrive

i1
DL Z P -

k=0 k=0
i—1 m _ m _
=) (nijkh -3 hblkijkzé‘kz) = ) Rbjikijiea + pish
k=0 =1 I=1
=0, j=1,...,m. (16)

Therefore, we have

i-1 m

D bikiiea =rij — > Y bikijuien, (17)

=1 k=0 l=1

where
i-1
rii = pij + Y Mijk- (18)
k=0

The system of equations (17) may be written in the matrix form:
B i—-1
Biei = Ri— Y Duex,
k=0

where B; = (b%)), Dix = (i), Ri = (ri1, ..., mim)T, and

B_';-, £ bﬂlz‘;ﬂ, d;’f &= blE;_,‘kl. (19)

Hence we derive the following system of inequalities:

-1 -1
IBigill < IRill + - IDakll - llewll < NRill + 1Dill D Nl
k=0 k=0

where D; = {D;x : ||Dikl|| > ||Dixll, 0 < k < i - 1}, the norm of a vector
Z = (Z1,...,Zm)7 is choosed as ||Z|| = max;|Z|, and the matrix norm is
submitting to this vector norm.

Supposing the nonsingularity of the matrix B;, we obtain

i—-1
lleall < UBFH (IR + 1Dl Y Newl)- (20)
k=0

Let us find the estimation for the initial error £9. The system of equations
(16) for this case will be as follows:
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m
Joj = Ioj = pojh — zhbﬂkOﬂEot =0, j=1,...,m.

=1
From here we have -
}Z bitkojicoi| < |pojl,
I=1
and
lieoll < 11B5 ™11 - lloll, ' (21)
where po = (po1, ..., Pom)7.

To obtain the resultant estimation, we use the following Henrici lemma,
[4]): .
Ifl6l < AYZO 10|+ B ati=1,2,..., A, B > 0 and |6| < 7, then

6] < (B+ Ap)(1+ AL, i=1,2,....

Therefore, taking into account inequalities (20), (21), we obtain the following
estimation:

lesll < BT NAIRN + 1LD:l| | B3 lmoll) x
(L+ 1B (22)

Let us modify inequality (22) to find the factors, effecting on the decreasing
of the norm of ¢; vector with increasing the stage number m. Denote

m
QF = max|max K™ty 5,y(s))l, & < s <t
som—1 _ _RPm! (2m—1)
Q? = m mJa.x[m?xK (tijy s, 4(s))l, to<s<t.

Then, from (9) we conclude ||pi]| < Q™||6||- At the same time, from (14)
and (18) we have ||R;|| < ||pi|[+ P(m)iQ?™ 1. Thus, we obtain the following
inequality:

llesll < IBZH L+ 1B7HIDA)™ x
(PEm)iQ™ " + 116l @F + DA 1B YIQE)).  (23)

The analysis of this inequality will be carried out below.

5. Stability of the method for perturbation
of kernel and right-hand side of equation

Let us consider a case, when K (t,s,y(s)) and f(t) are used in (1) instead of
K(t,s,y(s)) and f(t) respectively. Here
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K (t, s, 5(s)) — K (2, 5, y(s)) oo TIx1t0.]) <'9,
() = FOlleqom < 7-

Let us suppose also that the smoothness restrictions onto the function
K (t,s,y(s)) are the same as for the original function K(t, s, y(s)).

The system of quadrature equations, approximating new integral equa-
tion with perturbations, is the following:

i-1m m
E Z hb;K(t.'j, triy }_fkf) + Z hbjtj{(tij, tits Yd) = fs'j- (24)
k=0 i=1 =1

To find the estimation error ||&]l, i = 0,...,1 — 1, where &; = Y;; — uij,
g = (&, .- .,&im)T, we consider the approximation of the separate integral
terms. Denote

I; =" hbiK (tij, ta, Ya).

=1
Then
l _ tij m
Jij - Iij = /; K(tij, s, y(s)) ds — > hbjtK (tij, ta, ya) +
i =1
m —
> hba(K (tij, ta, yia) — K(tij, ta, i) +
=1
m - — -
> hbji(K (ti, tay yar) — K (5, ta, Ya))
=1
m = [y
= pijh+ Y hbj(Bij + kiji(ya — Ya)), (25)
=1
where

01 = K (tij, ta, yat) — K (i, ta, yar),

& _
9K(t s, 2) &t € [Ya, ya).

kijt=—5- l(i.‘j,iihfil),

Analogously, denoting

fg‘i’ = Z hb[f_{(tg'jgtkh Ykl)a
I=1

we have

J‘(f) - I_"(;) = mijeh+ 3 hbi(Bijht + kijia (v — Yar)), (26)
=1
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where

Oiikt = K (tij, trt, yi) — K (tijy tity Yit),
= 0K (t, s,z _
kijki = %l €t € [Yia, yrt]-

(tijotuénr)’

Subtructing (24) from (3), we obtain
EJ,-(;) + Ji5 — Ef,(:} - Lj = fij - fij-
k=0 k=0

Taking into account (25) and (26), we have

m _ i—-1 m _
Z bjikijigy = 745 ~ Z Z bikijki€rl,
=1 k=0 I[=1
where
m -1l m _
Fig=rij+ bl + 3 > bbisi — vii/h Wi = fij = fii-
=1 k=0i=1

Now using the same technique as in the previous item, we obtain the fol-
lowing system of inequalities for the norms of errors:

L _im
led < 1B N{(1RA + 1041 3 lleel ), 1)
k=0 :
where
D; = {Dik, ||Dikll > ||1Dill, 0 <k <i-1},
Bi= (?’}l), Dy = (tf.‘;-’?), R; = (Fa, . --v’_”im)T’

biy = bjtkisi, df = bikijki-

Find the estimation for components of R; vector. Here we take into
account that 7%, 8 =1 and Y 12, bj; = A;. The second equality followed
from (7) with k = 1. Then we have

m =1 m
I7ii] < Irigl+ A5 3 160l + 3 D 18iimal + |isl /B
=1 k=0I1=1

and _
Rl < [|Rill + m(i+ 1)8 4 v/h. (28)
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For norms of the initial errors we have the estimation

m - m .
Izbﬂkoﬂgml < lposl +|ij190jr| +h{%’l
=1 =1

< looil + Ai| D Boq| + H%l'
=1

Hence .
lloll < IBo Ii(lleoll + 6m + v/h). (29)

Applying the Henrici lemma to inequalities (27), (29) and accounting (28),
we have

il < i (6m(i + 1+ gi) +7(1+ ) /b + | Rall + gillpoll)

where
=1

=—1 =-1 .
g =WDillllBo II, @ =iB; I+ IB; |IDill)~".

Finally, we conclude that at small perturbations of the right-hand side of

the equation and the integral kernel with a fixed time step h, the error of

the solution to equation with perturbations will be close to estimation (22).

6. The numerical analysis of estimation
for the error ||g;||

Carry out the numerical analysis of estimation for the error defined by (23).
Because the values ||B!||, ||Di]l, @™, and Q*™! do not depend on the
kernel of integral operator, we will demand their boundedness only. Let us
analyse the behavior of two remained functions from (23), namely P(m) and
||0m]|. Since the nodes A;, as it was pointed above, were choosed equal to
the nodes of the quadrature Radau formula, then the values of the required
functions may be obtained numerically, if we have found the values of the
nodes A; at j = 1,...,m and have calculated §;,, and P(m) by (13) and
(15) respectively. Let us consider the graphs of logarithms for calculated
values of these functions, depending on the stage number m (the figure).

These functions are approximated with the sufficient accuracy by the
following curves:

|6m | = exp(~1.5m — 0.7), P(m) ~ exp(—2.77m + 1.9).

From here we conclude that the decreasing of the third factor on the right-
hand side of inequality (23) under increasing of the stages number m has
the exponential character, and the decreasing of the whole norm of ||g;]|
error must be analogous, despite of the possible growth of the norms of
some matrices in (23) in view of their possible bad conditions, which are
compensated by the quick decreasing of third factor.
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7. Numerical experiments and discussion

To illustrate the above-mentioned results, we consider the numerical solution
to the following integral equation of the first kind [5] by the implicit Runge-
Kutta method, stated in this work:

./:sin(t - 8)y(s) ds = exp(t?/2) — 1, (30)

with the kernel having the form k(t,t) = 0.
.This equation is convenient for analysis, because there exists the equiv-
alent Volterra equation of the first kind with kernel’s form k(t,t) # 0:

/Ot cos(t — s)y(s) ds = texp(t?/2), (31)

and the equivalent Volterra equation of the second kind:

t
y(t) — / sin(t — s)y(s) ds = (1+ t) exp(t?/2) (32)
0
that will be also solved by the same method. The solution to the Volterra
integral equation of the second kind was considered in [6].

The exact solution to equations (30)~(32) has the form
y(t) = (2+¢%) exp(t?/2) - 1.

Because all the kernels for problems (30)-(32) are linear with respect to
the required function, then each of them is a particular case of the linear
equation
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/: k(t,s)y(s) ds = f(t) + ay(?),

where o = 0 for (30), (31), and @ = 1 for (32). Then the elements of
matrices B; and D;x, defined by equalities (19), are the following:

By = bk (s ta),  dif = bik(tis, twa)-

That allows us to find ||B;?|| and ||D;|| in the explicit form.

Let us analyse the results of numerical solution under solving each of
equations (30)-(32) by stages (number of subgrid points), assuming the
values m = 6,10,20, and also for the one-step (I = 1) and the multistep
(I = 4) algorithms. The obtained solutions are presented in the table for
T=3.2.

" The type m I=1 I=4
of integral equation BI—I eps Bj—l eps
Volterra 1 6 333.6 1095.6 4353.7 6.54
kernel k(¢,¢) =0 10 2685.7 36.53 46208 8.2e-03
) 20 57104.8 2.38e-04 706075.9 5.04e-09
Volterra I 6 45.8 73.3 105.6 0.3
kernel k(t,t) #0 10 115.9 4.23 304.4 1.65e-04
20 425.4 7.48e-06 1285.5 6.64e-09
Volterra 11 6 6.12 0.26 1.32 4.66e-06
10 6.12 1.5e-05 1.32 4.55e-13
20 6.12 8.8e-09 1.32 0

‘The exact solution to problems (30)—(32) in this point is equal to
2047.18492416. The values of error eps for quadrature methods, obtained
in [5], are eps; = 68.4, eps, = 1.56, epsy = 0.5 respectively. These methods
are similar to the trapezium method, but with the using of the information
about separateness of the kernels k(t, s) for problems (30)—(32).

Analysing the table data we may note that the matrix By is bad-posed
for the Volterra equations of the first kind, and especially for those with
kernel’s form k(t,t) = 0. As a result, we have a quick growth of the norm of
inverse matrix to this case with an increasing of the number of the subgrid
nodes m. Perhaps this circumstance hinders to applying of many other
quadrature methods of high accuracy, for which the analog of this matrix
posesses the same properties.

From the other hand, this matrix is well-posed for the Volterra equations
of the second kind, so the norm of inverse matrix is practically permanent
under the increasing of the number of subgrid nodes, and is small by its
value.
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This leads to a reason of the necessity of reduction of the Volterra inte-
gral equation of the first kind to the second kind for its further numerical
solving, if it is possible. For equations (2) this transformation is obtained
by differentiation of its both sides with respect to ¢t under the condition that
the kernel and the right-hand side have these derivatives and k(¢,¢t) # 0.

Recall to the values eps in the table that are equal to

eps = |5Im| = |y(t;m) - Y|, tim =32

The values eps at m = 6 for the Volterra equation of the first kind are
too large. That indicates an insufficient number of stages for its solving.
Under the increasing of the number of stages, despite of the above-mentioned
growth of the norm of B}'l matrix, the error eps decreases until sufficiently
small value. That circumstance confirms numerically the results at the end
of the previous item on the character of changing of the error ||¢;|| in (22).

Under the increasing of the number of time steps, the decreasing of the
error eps also takes place. That is naturally, if we take into account the
decreasing of the step value h for p;; and 7;j¢ in formulas (9) and (14).
From here for choosed one-step and four-steps algorithms the ratio of norms
of these values will be 4™ and 4™~ respectively. From the other hand, for
the Volterra equation of the first kind in this case the increasing of ||Bf!||
takes place and, hence, the third factor on the right-hand side of inequality
(22) also increases. This circumstance lowers the effect of increasing of the
number of time steps, though the obtained values eps are decreased in a few
exponents.

The norm of BI“ matrix for the Volterra equation of the second kind,
conversely, is decreased under increasing of the number of time steps. By
virtue of that, the changing of time step value h here will be more important
factor, as for the Volterra equation of the first kind, i.e., the value of the
error eps is decreased more quickly under increasing of the number of steps
I. That is also observed by the calculated values in the table.

'In conclusion we note the advantage of using the implicit Runge-Kutta
method of high accuracy, especially for the Volterra equations of the first
kind. So, for example, the value of the error eps in the table under using
of 20th-stages one-step method is less than the same one under using of
10th-stages four-steps method.
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